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A scoping literature review was conducted to summarize the current research trends in fatigue identification 
with applications to human activity recognition through the use of diverse commercially available 
accelerometers. This paper also provides a brief overview of heart rate variability and its effect on fatigue.  
The linkage between recognizing an individual’s unique physical activities, and its possible feedback to 
manage fatigue levels were explored. Overall, triangulation of heart rate variability and accelerometer data 
show promise in identify chronic cognitive and physical fatigue levels.  

 
INTRODUCTION 

Millions of American workers suffer from fatigue each 
year. Fatigue has been linked to more than 328,000 traffic 
accidents each year, resulting in more than 109,000 injuries and 
6,400 deaths (AAA Foundation, 2014). Insomnia, which is one 
of the contributors of fatigue has been shown to cost the U.S. 
economy about $63 billion annually in lost productivity, and 
sleep-deprived workers face lower earnings, loss of cognitive 
ability, and lower job performance (Kessler et. al, 2011). While 
job demands cannot always be controlled, an effective approach 
to managing and preventing fatigue can be created to reduce 
fatigue’s negative impact on safety.  

Desmond & Hancock (2001) define fatigue as “a transition 
state between alertness and somnolence.” Soames-Job & 
Dalziel (2001) define fatigue as “a state of muscles and the 
central nervous system in which prolonged physical activity or 
mental processing, in the absence of sufficient rest, leads to 
insufficient capacity or energy to maintain the original level of 
activity and/or processing.” Three different types of fatigue are 
discussed in the literature: physical/peripheral, emotional, and 
cognitive/mental. Physical fatigue can be a consequence of 
prolonged activation of muscles. Emotional fatigue is also 
known as chronic fatigue. Moreover, cognitive/mental fatigue 
relates to the inability to keep mental focus (Tanaka et al., 
2009).  

Chronic Fatigue Syndrome (CFS) can be either clinically 
evaluated or unexplained. Other symptoms of CFS are the 
following: feeling sick after doing physical work, feeling as 
he/she is never fully-rested even after sleeping a long time, 
major memory and concentration problems, headaches, muscle, 
joint, and/or lymph node pain, as well as sore throat (Fakuda et 
al., 1994). There is currently a discrepancy between patients 
reporting symptoms of CFS and what physician understand as 
chronic fatigue because this phenomenon is not explained by 
medical conditions. Symptoms include suffering of continuous 
fatigue for at least 6 months, despite efforts to sleep well and to 
reduce physical activity (Boneva et al., 2007).  

While fatigue can disappear after a period of rest, long-
term or chronic fatigue cannot be easily fixed. A common way 
to measure fatigue is by recording an individual’s heart activity 
through an electrocardiogram (ECG) analysis over the length of 

a day.  Computer analysis outlines the person’s heartbeats 
(often described as QRS complex) and derive time domain 
features that can give an overall sense of the heart’s behavior 
(Task Force of the European Society of Cardiology, 1996). 

Non-chronic fatigue is measured explicitly through 
subjective measurements and implicitly through 
(psycho)physiological and behavioral tests like 
electroencephalography (EEG) and Multiple Sleep Latency 
Test (MLST), respectively (Handbook of Operator Fatigue, 
2012). It is important to measure fatigue immediately or in real-
time because people may not effectively recognize their level 
of fatigue as evident by fatigue-related driving incidents. There 
is a need to obtain this information non-invasively and without 
work obstruction in order to monitor fatigue causes properly.  

In addition to ECG, more recently a combination of heart 
rate variability (HRV) and accelerometer data for activity 
classification have been used as proxy measures for fatigue. 
The goal of this paper is to present a scoping literature review 
of current research trends in fatigue identification with 
applications to human activity recognition and heart rate 
variability. This paper will also explore the link between 
machine learning’s capability of recognizing an individual’s 
unique work activities, and possible feedback to manage a 
person’s fatigue level.  

METHODS 

A scoping literature review was conducted on articles 
published from 1985-2016 documenting human activity 
recognition in relation to fatigue. Focus of this scoping review 
was on HRV and accelerometer sensors used in human activity 
recognition studies, the type of data collected, as well as the 
machine learning methodologies applied to human activity 
recognition.  

Several databases including Google Scholar and Web of 
Science were searched using a combination of keywords such 
as human activity recognition, heart rate variability, fatigue, 
and accelerometer data, and commercially available 
accelerometers.  

Inclusion criteria used were: a) studies related to 
accelerometer data analysis, HRV, and fatigue, b) published as 
a full-text article in a peer-reviewed journal or conference 



 

 

proceedings, c) articles written or translated into English, and 
d) articles published after January 1985. There were 39 
reviewed papers that were not included in the study because 
despite containing some of the keywords, they had a different 
focus. Four papers were used strictly for background 
information on HRV.  
 

RESULTS & DISCUSSION 
 
Heart Rate Variability (HRV) 

 
HRV reflects the buildup of self-regulatory strength in the 

body when an individual is performing a stressful task that 
involves high levels of mental load such as planning how to 
escape an emergency situation. Segerstrom & Nes (2007) 
suggest that people can overcome self-regulatory fatigue and 
thus high motivation depending on time factors could prevent 
self-regulatory failure. Parasympathetically mediated 
inhibitory system has shown to be associated with self-
regulation (Segerstrom & Nes, 2007). Unlike surviving 
dangerous and physically demanding situations that involve 
fight or flight reactions, self-regulation is cognitively 
demanding. This mechanism halts future negative actions 
which results in usage of the vagal nerve’s decision to cut 
physical energy depletion to focus body energy for the brain’s 
use so it can perform mental tasks better (Fairclough & 
Houston, 2004; Porges, 2001). In addition, Fairclough & 
Houston (2004) showed that a prolonged Stroop task, which is 
a cognitively challenging task, increased HRV over the length 
of the experiment.  

The following time domain HRV parameters are often used 
when analyzing central nervous system behavior using ECG 
heart rate activity data: 

SDNN. the standard deviation of the normal to normal R-R 
interval which is the cycle length of heart beats monitored for 
24 hours. 

SDANN. the standard deviation of the average normal to 
normal R-R intervals of 5 minute chunks of ECG data. 

SDN index. the average of the 5 minute standard deviations 
of the normal to normal R-R intervals. This allows to measure 
the inconsistency due to heartbeat cycles that last less than 5 
minutes. 

RMSSD. the square root of the mean squared differences of 
consecutive normal to normal R-R intervals. 

NN50. the number of consecutive normal to normal R-R 
intervals that are more than 50 milliseconds (ms) apart from 
each other. 

pNN50. the ratio derived by dividing NN50 by the total 
number of all normal to normal R-R intervals. 

In addition, according to Boneva et al. (2007), the 
following frequency domain HRV parameters are often used 
when analyzing central nervous system data: 

Low frequency power (LF[𝑚𝑠#]). Usually ranging from 
.04-.15 Hertz (Hz).  

Very low frequency power (VLF[𝑚𝑠#]). lower than or 
equal to .004 Hz. 

Total power (TP[𝑚𝑠#]). the variance of the normal to 
normal interval over the analysis time. 

High frequency power (HF[𝑚𝑠#]). Ranging from .15 Hz-
.4 Hz. 

LF/HF Ratio. HRV has been accepted widely as a 
consistent and reliable measure of mental workload. Mean heart 
rate has proven to be a decent measure of physical workload 
and stress (Wickens, Gordon, & Liu, 2004). Segerstrom & Nes 
(2007) shows that HF level (vagal nerve activity) decreases 
during mental tasks that make people tired which amounts to an 
increase in LF/HF ratio.  

Boneva et al. (2007) showed that when a person with CFS 
is sleeping, heart rate (HR) increases, but HRV’s LF, VLF, and 
TP values actually decrease. While it is known that medications 
such as antidepressants, among others, can alter HRV, there has 
been no correlation found between medication intake and 
having a higher HR or lower HRV. Furthermore, these 
characteristics do not completely explain why sufferers of CFS 
are forced to reduce activity levels. In addition, increased HR 
in CFS subjects was shown to be correlated with standardized 
and validated measures for fatigue as an impairment (Boneva et 
al., 2007).  

HRV is affected by the type of activity. Next, we provide a 
review of accelerometer sensors and activity classification 
methods enabled by accelerometer data. 

 
Accelerometer Sensors 
 

Through the review, 43 commercial accelerometers, 8 lab-
made accelerometers, and 4 mobile phone accelerometer 
applications were studied. It is important to note that some 
studies used or reviewed more than one accelerometer. For 
example, Plasqui & Westerterp (2007) compared eight unique 
accelerometers and a pedometer. From the reviewed sensors, 5 
were uniaxial, 7 biaxial, 20 triaxial, and 1 quadriaxial 
accelerometers. All the mobile phone applications had an M7 
motion coprocessor. All the lab-made accelerometers were 
triaxial. There was no particular trend on where to place the 
sensors to identify walking intensity and 1-4 axis were used 
successfully for this classification. The information collected 
included: accelerometer name, axis complexity, body 
placement, types of activities used to interpret, accelerometer 
range, sampling frequency (in Hertz), weight (grams), and data 
presentation (real time or retrospective). The literature review 
intended to identify how currently commercially available 
accelerometers have been used to identify different types of 
activities. It was found that some of the publications often 
combine parts of different sensors to fit their customized design 
(e.g., in Prasad and Sarma (2007), a GPS named "T2" and a 
triaxial accelerometer from Athletic Data Innovations). Other 
times, such as in Karantonis et al. (2006), biaxial 
accelerometers were mounted orthogonally to each other to 
provide a triaxial perspective.  
       The most common activity studied (37 sensors) using 
accelerometers was the intensity of walking and step counting. 
Studies used a combination of uniaxial, biaxial, and triaxial 
accelerometers placed on the hip, waist, lower back, chest, 
wrist, pant pockets, and arm. Intrusiveness, wearability, and 
comfort were discussed as the main variables used in the 
selection and adoption of different accelerometers in various 



 

 

studies. Only Akintola et al. (2016) had the integration of HRV 
and accelerometer data comparison but it was to compare the 
performance of Equivital EQ02 Lifemonitor with Holter.  

Activity Classification 

The review focused on different physical activities studied 
and classified by the researchers, as well as methodologies used 
for activity classification.  

Physical activity classifications. Figure 1 illustrates the 
Human Activity Groups identified in this review. Studies 
included Khan et al. (2010) and Dernbach et al. (2012). The 
most popular category was “walking.” It included regular 
walking, slow walking, fast walking, jogging, running, standing 
still, climbing upstairs, and going downstairs. The “falling” 
category group included active fall (a person that was running 
trips and falls), inactive fall (standing still and falling down), 
falling from chair, and unspecified falling (1 article). The 
“exercise” category included sit-ups, jumping, biking/cycling, 
and dancing. The “resting” category included sitting down, 
lying down (as in a supine position), and resting (unspecified 
manner). “House chores” included vacuuming, cleaning, 
cooking, sweeping, watering plants, and scrubbing. “Personal 
care” category included brushing teeth, taking medication, and 
washing hands. 

 Transition categories include going from lying/standing, 
standing/lying down, lying down/sitting, sitting down/lying 
down, sitting down/standing up, standing up/sitting down, 
walking/standing, standing/walking, and circuit 
(sitting/walking/lying down/standing/walking/sitting). Other 
activities included driving, working on a computer/typing, 
riding an elevator up/down, gesticulating, and talking with a 
person.  

 

 
Figure 1. Frequency of human activity groups studied 

	
Accelerometer features/statistics used. While sensors were 

used on different parts of the body in various studies such as 
wrist, waist, chest, or ankle, common features were usually 
used. The most popular features were mean, standard deviation, 
and correlation of each of the 3-axis which were used in 7 
studies each. Broadly stated, descriptive statistics through time 
domain features are popular and show promise to predict human 
activities through accelerometer readings.  

Table 1 lists the frequency of the data features used by the 
reviewed articles. Simple features, such as average and standard 

deviation of axis data, were heavily used. Angle features that 
calculated the difference in angle movements between the X, Y, 
and Z axes were also common. Energy features calculate the 
amount of energy consumed in each axis. Thresholds features 
included use of specific acceleration cut-offs for each intensity 
category that helped distinguish between low, medium, and 
high intensity activities. 

  
Table 1. Accelerometer features/statistics used in the literature  

Data Features Frequency 
Simple  35 
Angle 12 
Energy 7 
Fast Fourier Transform (FFT) 3 
Thresholds 3 
Root Mean Square (RMS) 2 
Average Peak of Frequency (APF) 2 
Other 13 

 

 
Methods used to analyze accelerometer data. The study 

with the most varied techniques was Ravi et al. (2005) with 5 
methods using the Weka Toolkit (Decision Tables, Decision 
Trees [C4.5], K-Nearest Neighbor [KNN], Support Vector 
Machine [SVM], and Naïve Bayes) as well as Boosting, 
Plurality Voting, Bagging, Stacking with Ordinary Decision 
Trees (ODTs), and Stacking with Meta Decision Trees (MDTs). 
In their study, Ravi et al. (2005) collected data from a triaxial 
accelerometer around participant’s waist with ± 4 g and at 50 
Hz sampling frequency.	Moreover, the study used all of these 
human activity recognition methods by only calculating mean 
and standard deviation of X, Y, and Z axis values, energy 
expenditure in each axis, as well as the correlation between the 
3 axes. This is important because it reiterates the strength of 
descriptive statistics and the body’s energy expenditure link to 
human activity intensity since they allowed to distinguish 
between low intensity activities (walking, standing still and 
brushing teeth), medium intensity (vacuuming and walking), 
and high intensity (running, sit-ups, and going up/down stairs). 	

Mannini & Sabatini (2010) also used 10 techniques 
through three main approaches: probabilistic approach (Naïve 
Bayes, Gaussian Mixture Model [GMM], Logistic Regression, 
and Parzen Classifier), geometric approach (SVM, Nearest 
Mean, KNN, and Artificial-Neural Networks [ANN]), and 
C4.5. The most frequently used methodologies were Multilayer 
Perceptron/Artificial-Neural Networks (same as ANN) and 
Weka Toolkit adopted in five studies. The data collection using 
Weka Toolkit was done through five biaxial sensors placed in 
the ankle, leg, wrist, waist, and upper arm. 

He & Jin (2008) used a triaxial accelerometer placed inside 
pant pocket with 100 Hz frequency and range of ± 3 g. The 
study proposed an autogressive (AR) model that identified four 
activities in three different levels of intensity: low-intensity 
(standing still), medium-intensity (walking) and high-intensity 
(jumping and running) through SVM with over 92% accuracy. 



 

 

These results are more accurate than simply using FFT features 
and descriptive statistics through time domain features. 

Multilayer Perceptron yielded over 93% accuracy for 
simple activity classifications and 50% accuracy for complex 
activities. In particular, simple activities retained their high 
classification accuracy even when paired with complex 
activities (Dernbach et al., 2012). 

Yang, Wang, & Chen (2008) used a triaxial wrist 
accelerometer to classify the following activities: standing still, 
walking, running, vacuuming, brushing teeth, sitting down, 
scrubbing, and working on computer. It had the best average 
accuracy (95%) when using three hidden layers in the pre-
classifier, five in the static classifier, and seven in the dynamic 
classifier. In this study, higher recognition rate was observed 
for Multilayer Perceptron than KNN.  

Lester, Choudhury, & Borriello (2006) applied lab-made 
sensors into a variation of sensor locations (shoulder, waist, 
dominant wrist). For all three sensors combined (all sensors, 
shoulder, waist, and wrist combinations), Hidden Markov 
Model lassifier was observed to have higher accuracy than 
static classifier.  

Bayat, Pomplun, & Tran (2014) used two locations (in-
hand and in-pocket) for the 100 Hz android triaxial 
accelerometer.  This study showed that in-hand sensor location 
is better suited than in-pocket when using Multilayer 
Perceptron, SVM, Random Forest, Logistic Model Tree (LMT), 
Simple Logistic Regression, and Logit Boost. 

Khan et al. (2010) were able to classify several activities 
using with ANN, AR, Linear Discriminant Analysis (LDA), 
Single-Level Human Activity Recognition Algorithm 
(SLHARA), and a Hierarchical Human Activity Recognition 
Algorithm (HHARA). It was found that the best strategy to 
transition movements was HHARA with around 98% accuracy. 
It was also very good at differentiating between low-intensity 
activities like lying down, sitting down, and standing still. This 
is important because it has been shown that even though it is 
difficult to perform, HHARA can be a great way to distinguish 
between all types of activities without using any other machine 
learning techniques. Khan et al. (2010) had an inadequate 
amount of training data, yet it reported around 98% correct 
activity classification through its hierarchical recognition 
scheme. This suggests that their newly proposed model can 
obtain high activity recognition accuracy without a large 
amount of training data. 

Győrbíró, Fábián, & Hományi (2008) placed the triaxial 
accelerometer with 50 Hz frequency in the dominant wrist, 
ankles, and hip. Using ANN and C4.5, the team accomplished 
around 80% correct activity recognition for three different 
intensity levels: low-intensity (slow cycling), medium-intensity 
(walking and slow-fast-slow cycling intervals) and high-
intensity (running and fast cycling). This is significant because 
it shows that the use of multiple sensors can compensate for the 
inherent error collected in the accelerometer data for doing an 
activity in different intensities. So, multiple sensors can be used 
to more accurately distinguish between walking fast or slow, 
where distinguishing between these two walking intensities 
may be difficult when using only one accelerometer (usually 
around the chest or around the pelvic area).  

Casale, Pujol, & Radeva (2011) used Decision Trees, 
Bagging, Boosting, and Random Forest to distinguish between 
walking, standing still, climbing stairs, working on a computer, 
and talking. Despite using a lab-made triaxial accelerometer 
placed on the chest area, the most useful strategy to discriminate 
between these different activities was Random Forest resulting 
in 94% overall classification accuracy.  

Karantonis et al. (2006) placed two 100 Hz biaxial sensors 
orthogonally to create a triaxial spectrum sensor around the 
waist and achieved 83% accuracy for walking and 96% for 
falling detection through the use of normal signal magnitude 
area threshold classification.   
  

CONCLUSION 
 

While methods such as HRV analysis show promise in 
detecting both cognitive and physical fatigue, identifying 
different physical activities seem necessary to improve the 
accuracy and robustness of this detection. Such robustness is 
necessary particularly in diagnosing chronic fatigue since 
current methods do not use pathophysiology of central nervous 
system and no definitive treatment has been offered for chronic 
fatigue (Tanaka et al., 2009).  

The review of wide range of accelerometer sensor 
positioning, activities identified using accelerators and methods 
used show promise in the efficacy of these methods for fatigue 
detection and prevention. However, it is important to note that 
while good activity recognition from waist, hip, or foot location 
can be achieved, the best placement to check HR data is either 
the wrist or the chest area due to the close proximity to key 
blood vessels to check the pulse. 

The review had several limitations. Due to the proprietary 
nature of the commercially available activity algorithms, one 
cannot readily compare them side by side to see which one is 
superior. In addition, an exhaustive review of available activity 
tracking tools is beyond the scope of this review.  

Future efforts may benefit from focusing on the 
development of quantifiable fatigue risk assessment models 
based on ECG and accelerometer data collected in real-time 
using wearable non-invasive sensors such as smartwatches. 
These data features will be analyzed using C4.5, Multilayer 
Perceptron, and HHARA schemes given their accuracy levels 
for studies with large number of activity classifications. The 
final outcome could be a smartwatch application that can advise 
individuals to take job breaks or go to sleep before the person 
gets too fatigued. This will allow the comparison of HRV and 
accelerometer data to understand how different activities affect 
fatigue. Eventually, this could lead to quantifiable breaks for 
mental work just like there are for physical work in the 
manufacturing setting. Developing a quantifiable fatigue risk 
assessment model can also help individuals with resistance 
against poor behaviors (e.g., alcohol or tobacco consumption). 
As mentioned before, this is due to the link between fatigue 
people having less motivation to maintain their goals. In 
addition, an understanding of common human activity 
recognition models can aid in the understanding of machine 
learning and data analysis techniques for stress management.  
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