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About 425 million adults around the world were living with diabetes in 2017. A relevant condition called 
Hypoglycemia is characterized by a dangerous low level of blood sugar that could be fatal to diabetic pa-
tients. Continuous glucose monitoring systems (CGMS) are the most popular commercially available tech-
nology for detecting diabetic hypoglycemia. However, CGMSs are invasive, costly, and not user-centric 
thereby not sustainable for diabetes management. This paper documents our initial efforts in designing an 
inexpensive, non-invasive, wearable physiological tremor sensory system to detect the onset of hypogly-
cemic events of diabetic patients. The design cycle briefly presented here includes: 1) determination of sys-
tem (technology and user) requirements, 2) development of the tremor detection prototype, and 3) testing 
and validation of the system in non-clinical and clinical settings using human factors, data analytics, and 
biomedical sciences techniques and approaches.  

 
 

INTRODUCTION 

According to the International Diabetes Federation, ap-
proximately 425 million adults were living with diabetes in 
2017 with this number set to increase to 629 million in less 
than three decades (IDF Diabetes Atlas 8th Edition, 2017). In 
addition, 212 million diabetic patients still remain undiag-
nosed, while 352 million others are at risk for getting type 2 
diabetes (IDF Diabetes Atlas 8th Edition, 2017). In 2012, the 
total costs of diagnosed diabetes in the US reached 245 billion 
dollars including 176 billion in direct medical cost and 68 bil-
lion in reduced productivity (American Diabetes Association, 
2013). Diabetes is associated with heart disease, stroke, blind-
ness and many other serious complications. According to the 
American Diabetes Association, diabetes was the 7th leading 
cause of death in the US in 2015. One of the most life-
threatening conditions for diabetic patients is hypoglycemia, a 
condition resulting from low blood glucose. Not eating enough 
carbohydrates, skipping a meal, drinking too much alcohol 
without food can all result in hypoglycemia among diabetic 
patients. Hypoglycemia symptoms include fatigue, sweating, 
anxiety heart palpitations and tremor (American Diabetes As-
sociation Hypoglycemia, n.d.). Hypoglycemia can further re-
sult in seizures, loss of consciousness and death.  

Continuous glucose monitoring systems (CGMSs) are 
currently the most popular approach for detecting diabetic 
hypoglycemia in the market. CGMSs provide real-time glu-
cose level in patients’ interstitial fluid by inserting a glucose 
oxidative enzyme coated catheter under the skin. The enzyme 
generates electronic signals when reacting with glucose in 
interstitial fluid (Minnock, 2011). However, a recent study on 
continuous glucose error analysis of CGMS products in the 

market showed the clinical accuracy of detecting hypoglyce-
mia is merely 56% (Bay, 2013). Other limitations of CGMSs 
include frequent false alarms, invasive catheter placement, and 
expensive equipment costs. Cost of some available CGMSs is 
listed in Table 1. The devices costs more than $999 and the 
sensor which is coated with enzymes are only active for 3~7 
days. The transmitter battery module would cost an additional 
$500 and needs annual replacement (Minnock, 2011). In addi-
tion, CGMS users often experience bleeding during sensor 
insertion as well as improper inserting and accidental dislodg-
ing (Minnock, 2011).  

Table 1. Available CGMSs (Minnock, 2011). 

CGMS 
FreeStyle 
Navigator 
(Abbott) 

Dexcom 
Seven Plus 
(Dexcom) 

Real-Time 
Guardian 

(Medtronic 
MiniMed) 

Real-Time 
Revel 

System 
(Medtronic 
MiniMed) 

Cost 
Device: 
$1450 

Sensor: $75 

Device: 
$999 

Sensor: $79 

Device: 
$1199 

Sensor: 
$36.25 

Device: 
$999 

Sensor: 
$35 

Electroencephalogram (EEG) and electrocardiogram 
(ECG) devices have been used in several research studies tar-
geting hypoglycemia detection. It has been found that EEG 
signals show lower frequency and higher amplitude about 30 
minutes before the onset of hypoglycemic events (Juhl, 2010; 
Snogdal, 2012). However, the EEG devices needs to be insert-
ed subcutaneously behind the ear which makes it very invasive 
and suffer from poor wearability. Besides EEG, ECG studies 
have shown abnormally QTc interval caused by hypoglyce-
mia. Nevertheless, the ECG electrodes are not suitable for 
daily use (Nuryani, 2012; Murphy, 2004).  



Tremor is one of the main symptoms of hypoglycemia. 
Tremor detection is well documented for clinical disorders, 
such as Essential Tremor (ET) and Parkinsons Disease (PD). 
However, usage of tremor detection for hypoglycemia event 
diagnosis remains a research gap. In several studies, piezoe-
lectric accelerometers were attached by a “Perspex” ring to the 
terminal phalanx of the middle finger to measure postural 
tremor during arm and hand outstretching tasks (Wharrad, 
2000; George, 1995). While this approach is promising for 
hypoglycemia detection applications, the piezoelectric accel-
erometer is not comfortable for recording activities of daily 
life (George, 1995).  

The objective of this research is to demonstrate a proof of 
concept design of an inexpensive, non-invasive, wearable 
physiological tremor sensory system to detect the onset of 
hypoglycemic events of diabetic patients. While the overall 
design of the proof-of-concept includes: 1) determination of 
system (technology and user) requirements, 2) development of 
the tremor detection prototype, and 3) testing and validation of 
the system in non-clinical and clinical settings using human 
factors, data analytics, and biomedical sciences techniques and 
approaches, the focus of this paper will be on reporting re-
search efforts on the second phase, namely, development of 
the tremor detection prototype while briefly discussing the 
user-centered evaluation plan. 

METHODOLOGY 
 

Unique Hypoglycemia Tremor Signature 
 

Hypoglycemic tremor can be classified as the enhanced 
physiological tremor not caused by a neurological disease 
(Heller, 1987; Kelly, 2008). Compare to ET (7~10 Hz) and PD 
(3~6 Hz), hypoglycemic tremor has a higher frequency range 
of 10~14 Hz. Besides that, hypoglycemic tremor is bilateral 
and symmetrical compared to ET (bilateral and asymmetrical) 
and PD (unilateral or bilateral, and asymmetrical) (Rana, 
2015). As a result, hypoglycemic tremor detection requires a 
multidimensional and novel analysis method.  

 
Overall Systems Design  
 

The hypoglycemia detection system will be designed 
such that both finger and wrist tremors are measured with 
compact high-precision accelerometers. The low-frequency 
physiological tremor signals will be transmitted wirelessly to a 
smartphone or a server where the signal processing algorithm 
will identify the corresponding glycemic level. Vibratory and 
auditory alerts will be triggered once the onset of the hypogly-
cemic event is detected (Figure 1).  This system aims to use a 
novel, noninvasive approach to monitor blood glucose levels 
through tremor detection and provide feedback alerts about 
impending hypoglycemic events. It is expected that upon veri-
fication and validation of high detection diagnositicity and 
sensitivity, this system will drastically reduce the cost of 
healthcare and lost productivity and will significantly improve 
quality of life for millions suffering from diabetes. 

 

 
Figure 1. Simple block diagram of the overall instrumentation 

 
Initial development of the prototype included a wired 

tremor detection system built for the proof of concept and sen-
sor calibration. The type of accelerometer was determined by 
literature review. Based on subject matter expert feedback, the 
system was improved to be wireless, lightweight and weara-
ble. The improved sensor described below provides a suitable 
testbed for tremor frequency validation and data collections.  

 
RESULTS 

 
Initial System Prototype 
 

The hypoglycemia tremor sensor’s initial prototype de-
sign utilizes a wired device which includes an Arduino UNO 
board and two ADXL-335 accelerometers (Figure 2). A com-
puter powers and sends the code to the Arduino UNO board 
while the board controls the two accelerometers and transmits 
the signal back to the computer. The jumper wires that connect 
accelerometers to the Arduino UNO board were replaced by 
lightweight flexible 28 AWG cable ribbon to reduce weight 
and enhance flexibility. This prototype design was used to 
validate the concept and calibrate the accelerometers. 

  

 
Figure 2. Simple block diagram of the prototype sensor design 

 
The initial prototype design was found to be too bulky for 

daily use. Thus, the design was improved by using wireless 
modules and lightweight boards (Figure 3). The improved 
sensor design consisted of a wristband transmitter and a signal 
receiver. The wristband transmitter was a wearable physiolog-
ical tremor detection device which included two accelerome-
ters, a poly-Lithium battery, an Adafruit Feather board and a 
signal transceiver. On the other side, the signal receiver in-
cluded an Arduino UNO board and another signal transceiver. 
Powered by a lightweight 3V poly-Lithium battery, the weara-
ble physiological tremor detection device was able to obtain 3-



axis accelerometer signals and transmit to the receiver wire-
lessly with an 80-meter communication range (in ideal condi-
tions). 
 

 
Figure 3. Simple block diagram of the improved sensor design 

 
Accelerometer Calibration 
 

ADXL 335 is a small, thin and low-power 3-axial micro 
electro mechanical system (MEMS) accelerometer, with a 
minimum full-scale range of ±3 g. It outputs 3 voltage signals 
whose amplitudes are proportional to acceleration. Arduino 
IDE install was used to collect the 3 axial accelerometer volt-
age outputs. The initial prototype design had a sampling fre-
quency of 500 Hz while the improved sensor design had a 
sampling frequency of 100 Hz. The computer received the 
signals in packages (Table 2) that included the package num-
ber (column 1 in Table 2) and 6 channels voltage outputs (col-
umn 2-7 in Table 2) from two accelerometers. The package 
number served as the timestamp and showed any loss of pack-
ages due to signal disturbance. 
 

Table 2. Sampel raw voltage outputs from two accelerometers 
 

Package 
number 

hand 
x-axis 
(mV) 

hand   
y-axis 
(mV) 

hand    
z-axis 
(mV) 

wrist   
x-axis 
(mV) 

wrist   
y-axis 
(mV) 

wrist   
z-axis 
(mV) 

1 457 511 580 411 496 460 

2 457 551 581 412 496 461 

3 472 538 603 415 493 464 

4 464 547 582 406 501 469 

5 457 558 582 413 495 465 

 
Both hand and wrist accelerometers were calibrated by 

corresponding the accelerometer voltage outputs with different 
static inclination conditions. The calibration curve was formu-
lated as the linear regression of raw signals at +g, -g and 0g. 
The hand accelerometer calibration curves with the equations 
for each axis are shown in Figure 4. 

 

 
Figure  4. Hand accelerometer calibration curves 

 
Pilot Data 
 

A pilot study of physiological tremor detection was con-
ducted to visualize the raw voltage outputs from the improved 
sensor design. One pilot participant was recruited and was 
instructed to extend his shoulder with elbow and wrist straight 
until the arm was perpendicular to the upper body in the sagit-
tal plane. Two accelerometers were worn on the wrist and the 
terminal phalanx of the index finger. During the task, the 
physiological tremor amplitude of both hand (3 channels) and 
wrist (3 channels) increased (Figure 5 right) compared to the 
resting condition (Figure 5 left).  

 

 

Figure 5. Accelerometers voltage outputs at resting (left) condition 
and shoulder extension condition (right) 

 
PLANNED VALIDATION PROCESS 

 
Sensor Validation 
 

The improved sensor design must be validated in the 
physiological tremor frequency domain, which is from 10 to 
16 Hz. To do this, a bipolar stepper motor (NEMA 17), will be 
used to generate desired frequencies. To transform the oscillat-
ing motion to linear vibration, the stepper motor will be 
mounted with a T8-350 mm lead screw, 2 pillow bearing 
blocks, a coupling nut, and a coupling shaft.  

The vibration frequency of stepper motor will be set to 
10, 12, 14 and 16 Hz using an Arduino UNO board. Accel-



erometers of the sensor will be attached to the coupling nut 
and the voltage outputs will be collected (Figure 6). On the 
other hand, a validated tri-axial piezoelectric accelerometer 
sensor, will be attached to the coupling nut (Figure 6). To val-
idate the sensor in the physiological tremor frequencies, the 
signals from the piezoelectric will be compared with the sen-
sor outputs using power spectral density function. The calcu-
lated coherence factor will be used to evaluate whether the 
ADXL 335 is suitable for measuring physiological tremor. 
(Bhattacharya, 2012)  

 

 
Figure 6. Simple block diagram of the sensor validation system using 

NEMA 17 stepper motor 
 

Future validation efforts include testing the prototype 
with physiological tremors in the non-clinical (user-centered 
testing) and clinical settings (hypoglycemic clamp) to refine 
the data processing algorithm.  

 
Work-in-Progress: User-Centered Testing 
 

Participants. 60 participants of varying age groups  and 
health conditions (Table 3) will be recruited to participate in a 
lab study. The participants need to be cognitively intact and 
able to follow directions and demonstrate learning capability. 
Participants with cardiovascular diseases, metabolic condi-
tions, or muscular pain or injuries that interfere with hand out-
stretching tests will be excluded.  

Table 3. Participants age groups and health conditions 
Age Groups Healthy Type-1 Diabetic 

18-30 yrs 10 10 
45-60 yrs 10 10 
70+ yrs 10 10 

 
Data Collection and Analysis. Participants will start by 

completing the informed consent form, demographic infor-
mation survey, and will provide their health history. Anthro-
pometric measurements will also be taken.  

Before exposure to the prototype, participants will com-
plete a short interview to understand their unbiased prefer-
ences and acceptability of a wearable technology to help them 
with their hypoglycemia conditions.  Participants will then be 
asked to wear the sensor on their dominant hand using nylon 
hook and loop strap throughout the study. Participants are then 
asked to participate in series of structured (perform everyday 
tasks such as eating, writing, typing, driving using a simulator, 
etc.) and unstructured (free-from exploring) tasks in order to 
inform a taxonomy of user requirements for such a device. A 

post-test interview will be conducted to extract important con-
siderations for sensor interface, wearability, and interference 
with daily habits. The usability test will take around 30 
minutes to complete.   

After a short break, participants will be asked to partici-
pate in a second lab experiment for prototype validation. First, 
a hand outstretching test will be performed in the following 
conditions (Figure 7). In the resting condition, participant’s 
forearm will be fully supported to the wrist with the hand and 
fingers relaxed such that there is no voluntary muscle activity 
in the forearm and hand (rest tremor) condition; for posture 
condition, the participant’s hand will be stretched forwards 
from the wrist. In the loaded posture condition, posture tremor 
will be measured when subjects are either holding some 
weights in their hand or writing. 

At the start of the experiment, participants will be seated 
in a specific posture and will be asked to perform the hand 
outstretching tasks in three conditions. Measurements in each 
posture will be made for one minute on each hand. Adequate 
resting time will be provided so that the results won’t be af-
fected by muscle fatigue. The presentation of these conditions 
will be randomized. Each participant need to complete five 
tasks.  

Shortly after the Hand Outstretching Task, each partici-
pant will be asked to perform three trials of handgrip task with 
their maximum voluntary contraction (MVC) using grip dy-
namometers. Upon adequate rest, participants will be encour-
aged by the experimenter to maintain 30% MVC through repe-
titions of exertion (15 seconds) and rest (5 seconds) trial to-
wards hand muscle fatigue. Once the hand muscle of the par-
ticipant is exhausted (fatigue), he will be asked to perform 1 
trial of MVC (post-MVC).  

Shortly after the post-MVC, the Hand Outstretching Task 
in rest, posture, and loaded posture conditions will be con-
ducted again. The collected physiological tremor signal will be 
filtered to remove noises and analyzed to correctly identify to 
the vibration frequency of physiological tremor.  

 

 
Figure 7. Resting condition (left), unloaded (middle) and loaded 

Posture condition (right) 
 
Future Work: Clinical Testing and Hypoglycemia Detec-
tion Algorithm 
 

A clinical testing, through a hypoglycemic clamp experi-
ment, of the improved sensor design will take place in Hamad 
General Hospital in Qatar. 20 healthy, 20 type 1 and 20 type 2 
diabetic participants will be recruited for the study. The hypo-
glycemic tremor signals will be collected by the sensors worn 
on both hands of each participant. The collected signal will be 
used to develop the hypoglycemia detection algorithm.  

 
 



 
CONCLUSION 

 
Our research aims at investigating the efficacy of a CGM-

alternative technology to detect hypoglycemic events using 
high-precision hand tremor detection.  This paper provided a 
brief overview of the initial phases of the design and devel-
opment of a proof-of-concept. The prototype hypoglycemia 
detection sensor design has been improved to be wireless, 
lightweight and wearable. Work is in progress to improve the 
sensor using a user-centered approach and both machine simu-
lated tremor and human-subject physiological tremor valida-
tion. Future work involves collection of hypoglycemic tremor 
data from the clinical test to inform the design of hypoglyce-
mia detection algorithms.  
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