
   

 

Analyzing Heart Rate as a Physiological Indicator of Post-Traumatic Stress 

Disorder: A Scoping Literature Review 

 
The relationship between PTSD and Heart Rate (HR) has been widely studied since assessing HR can be a 

promising way to characterize and detect the episodes of outbreak in PTSD sufferers. However, most of the 

studies are limited to simple math-stat tools in terms of their statistical analysis. In this regard, this paper has 

reviewed 34 articles discussing HR statistical modeling. We extracted eight main approaches that researchers 

can use to analyze and interpret their HR data. Further, these approaches have been categorized into 

descriptive and predictive methods. A platform and a decision tree is introduced for heart rate data analysis 

for the future studies. 

 

INTRODUCTION 

Post-Traumatic Stress Disorder (PTSD) is a psychiatric 

condition that develops when people experience a shocking 

event in their life and have difficulties recovering from it 

(Nagpal, Gleichauf, & Ginsberg, 2013). Patients who suffer 

from PTSD often develop depression, anxiety, emotional 

instabilities, and heart disorders. Roughly 10% of women, 4% 

of men in the United States experience PTSD in their lives 

(Resnick, Kilpatrick, Dansky, Saunders, & Best, 1993). 

Additionally, PTSD is an endemic disorder among veterans 

affecting between 17% to 24% of veterans from recent conflicts 

(Richardson, Frueh, & Acierno, 2010). 

While an alarming number of individuals suffer from 

PTSD, treatments for this disorder are limited to in-session 

therapies (Moon, Smith, Sasangohar, Benzer, & Kum, 2017). 

Clinicians are understaffed, and treatment avenues are not 

sufficient especially when PTSD patients are struggling with 

the onset of symptoms outside of their clinicians’ office 

(Rodriguez-Paras et al., 2017).  

Mobile health apps (mHealth) may help resolve this issue 

(Galea et al., 2012). mHealth apps deployed on wearable 

devices (e.g., smartwatches) enable patients to continuously 

have access to their physiological state. Clinicians can also use 

these apps to collect physiological data and continuously 

monitor patients by assessing their reactions between therapy 

sessions (Rodriguez-Paras et al., 2017). 

The success of physiology-based mHealth apps depends on 

their ability to model the relationship between physiological 

conditions and disease states. Heart-based measures are often 

used for this purpose because it is feasible to passively collect 

HR data from current smartwatch technology. HR is 

representatives of the performance of the Autonomic Nervous 

System (ANS) (Hynynen, Uusitalo, Konttinen, & Rusko, 

2006). The ANS consists of parasympathetic (PNS) and 

sympathetic (SNS) systems, which regulate blood pressure and 

breathing rate during rest, and accelerate HR and regulate blood 

pressure during activity, respectively (Kandel et al., 2000). 

PTSD and its episodes of outbreak are also associaed with 

sustained changes in ANS (Prins, Kaloupek, & Keane, 1995). 

Therefore, HR as a physiological indicator of ANS can be used 

for assessing PTSD symptoms in patients when they are not in 

their therapy sessions (Khanade & Sasangohar, 2017). 

 

The other main physiology measure of heart that can be 

analyzied to examine PTSD is heart rate variability (Cohen et 

al., 2000). Heart rate variability has been analyzed in a variety 

of studies in domains such as energy expenditure and mental 

stress disorders. More than 17,000 articles were published 

about heart rate variability analysis methods by the year 2014 

(Monfredi et al., 2014). However, heart rate variability 

currently has limited application in consumer applications 

because it is not collected in most aftermarket smartwatches. 

Heart rate may be a promising alternative, but studies of heart 

rate modeling in PTSD are limited.  

Investigating HR and the associated quantitative models 

may be a promising future direction for mHealth applications 

that can provide better PTSD care between therapy sessions. 

The goals of this article are to review mathematical and 

statistical models used to analyze heart rate data in the anxiety  

and physical activity domains, identify opportunities for these 

models in the PTSD domain, and highlight research gaps in the 

current models. 

METHOD 

The review spanned five databases: (1) Medline OVID, (2) 

Medline Ebsco, (3) CINAHL Ebsco, (4) Embase Ovid and (5) 

Google Scholar. The initial search was carried out on March 12, 

2018; all studies published in or after the year 2000 were 

included. The search terms included: “heart*”, “pulse*”, “Heart 

Rate*”, “model*”, “heart beat*”, and “analysis*”. Abstracts 

were reviewed for relevance and articles that met 

inclusion/exclusion criteria were reviewed manually. Non-

English articles, as well as the articles that exclusively had 

studied other physiological reactions, such as skin conductance 

and blood pressure, were excluded. The inclusion criteria was 

all the papers that discussed heart rate analysis approaches. The 

searches identified 261 articles, of which 34 were included in 

this review. The 34 articles were selected based on their 

similarity and comparability to the scope of the research 

question.  

RESULTS  

Heart rate models 

 Mathematical models can be categorized into two 

major subsets: descriptive models and predictive models. 

Descriptive models address the question “what is happening 

and why is it happening?” while predictive models address 

questions such as “what will happen and why it will happen?” 

(Rosenbröijer, 2014). Both types of questions and their 



   

 

associated models are relevant to PTSD.  For example, 

descriptive models may be used to characterize PTSD triggers 

and the factors that affect their occurrence, whereas predictive 

models may be useful to predict PTSD onset and intervene.  

Beyond the predictive and descriptive dimension, models can 

be characterized by their type of output—discrete or 

continuous. The output of discrete models is time invariant, 

whereas the output in continuous models is time-based. Again, 

both types of models are relevant for PTSD characterization, as 

researchers may be interested in discrete states (e.g., stress 

moments) or continuous output (e.g., changes in heart rate 

during a stress moment). The applicability of descriptive and 

predictive models and discrete and continuous predictions 

suggests that they are valid categories to characterize the studies 

discussed in this review.  Figure 1 represents a decision tree for 

choosing a model among the methods. 

 

 
 
Figure 1: Decision tree for choosing models 

Descriptive Models 

1- Discrete output 
Analysis of Variance (ANOVA): Linear regression, and in 

particular ANOVA, was a common statistical method used in 

several articles (e.g., Bremner et al., 1997). ANOVA can be 

used to compare trends, and group means in experimental 

studies (Tabachnick & Fidell, 2007). Several studies used 

ANOVA to account for the effectiveness of treatments in PTSD 

patients as measured by HR (e.g., Foa, Rothbaum, Riggs, & 

Murdock, 1991). For example, the study by Gelpin et al. (1996) 

compared the resting HR in individuals pre- and post-treatment 

to measure the success of that treatment. Buckley, Holohan, 

Greif, Bedard, & Suvak (2004)  used ANOVA to compare 

resting HR in PTSD sufferrers with healthy controls, finding 

that PTSD sufferrers, in general, have higher resting HR levels 

(Buckley, Holohan, Greif, Bedard, & Suvak, 2004). While 

studies have found success with the use of ANOVA for 

inference in PTSD, it is limited in several respects. ANOVA 

has strong assumptions and is ill-suited to model dependent 

measures with strong temporal correlations. Thus it should not 

be used to make time-based HR predictions (Cacioppo et al., 

2007). 

First-order exponential model: A first order exponential model 

provides a function with a sustained growth or decay rate. In 

terms of heart rate anaysis, first order exponential models 

generate a nonlinear regression model for HR based on heart 

rate recovery (Marquardt, 1963). Heart Rate Recovery (HRR) 

is an indicator of vagal reactivation and SNS deactivation 

(Bartels-Ferreira et al., 2015). Although in the reviewed studies 

this approach was used to examine ANS in terms of physical 

activity, the model can be used to assess PTSD. Specifically, 

recovering from the onset of PTSD symptoms is associated with 

activation of vagal tone and withdrawal of SNS nervous system, 

both of which are correlated with HRR (Lipov, 2013). 

However, the HR and HRR correlations observed in the 

reivewed studies (e.g., Bartels-Ferreira et al., 2015) were 

moderate, which suggests a need for significant additional 

research.  

1- Continuous output 

Classical time series analysis: Classical time series analysis is 

a common statistical method that can analyze time-dependant 

data trends. Classical time series analysis is also a promising 

method for analyzing HR and HR fluctuations since these 

measures are time-based (H. Chen, Erol, Shen, & Russell, 2016; 

Peng, Havlin, Stanley, & Goldberger, 1995). Peng et al. (1995) 

showed that there are some independency between beat to beat 

HR fluctuations in healthy people that does not exist in 

cardiovascular disease patients. The findings of Peng et al. 

(1995) further suggest that classical time series analysis is a 

promising direction for PTSD hyperarousal analysis because 

similar HR changes have been documented in PTSD patients 

compared to healthy people in the presence of stimuli (Cohen 

et al., 1998).  

Beyond the analagous use case, classical time series 

has several benefits compared to ANOVA. Since the model 

explicitly considers autocorrelation, it does not require the 

independence of observations (Kantz & Schreiber, 2004). The 

models also have predictive capability and are well validated 

for illustrating trends and forecasting (Montgomery, Johnson, 

& Gardiner, 1990). However, one drawback of these methods 

is the assumption of stationary (constant mean value of the 

series), which is not always reasonable in HR data (e.g., when 

data is collected before and during exercise).  

Mixed regression model: Mixed linear regression analysis has 

been used in the literature to evaluate physiological responses 

to energy expenditure (Bonomi et al., 2015). This type of 

modeling can be applied with correlated observations (e.g., 

individuals similarities). Thus, it is beneficial for 

psychophysiology analyses that need to account for individual 

differences in responses (Cacioppo, Tassinary, & Berntson, 

2007). Multiple regression typically proceeds in a stepwise 

process with a focus on identifying two main effects: the 

population fixed effect and  the random effect. The population 

effect explains similarities in the data set (for instance HR), 

while random effect represents the differences among 

observations (the error term). 

The ability of mixed regression models to account for 

individual differences make them an advantageous choice for 

modeling PTSD. Several studies have identified significant 

individual differences in PTSD sufferers (Nagpal et al., 2013). 

Specifically, HR and heart rate variability levels are 

significantly affected by individual differences such as age, 

general health, and gender (Shaffer & Ginsberg, 2017).  



   

 

This type of modeling might produce similar results to 

ANOVA in many cases. However, in comparison with 

ANOVA, mixed regression models are more effective for 

datasets with missing values and multipe random effects 

(Darlington, 1990).  

Predictive Models 

1- Discrete output 

Machine learning methods: Deep learning and machine 

learning methods are popular approaches that are commonly 

used in recent research for prediction and forecasting (B.-J. 

Chen & Chang, 2004). Typically, in machine learning analysis, 

researchers divide their data set into testing and training data 

(or leverage techniques such as cross validation). After 

developing a statistical model by using training data, they 

validate their approach with the testing dataset. This approach 

is advantageous relative to approaches that use all of the data 

for training a model (e.g., ANOVA) and approximate metrics 

to evaluate generalizability (e.g., Adjusted R2).  

Most of the reviewed studies used heart rate variability 

along with machine learning algorithms to predict the stress 

level in individuals (e.g., Sano & Picard, 2013).  Machine 

learning studies evaluating HR primarily have focesd on energy 

expenditure. One exception is McDonald et al. (2019) who 

evaluated several machine learning algorithms—neural 

networks, decision trees, support vector machines and random 

forests—to predict the onset of PTSD symptoms in PTSD 

sufferers. Among all machine learning methods, support vector 

machines, and random forest algorithms performed best. The 

results of the reviewed studies suggest that machine learning 

analysis is a promising direction for future PTSD analysis, 

however they are limited in their inference capability. Machine 

learning methods are like black boxes where often predictive 

results have little rational explanation (Michie, Spiegelhalter, & 

Taylor, 1994). 

Fluctuation-dissipation theory 

Fluctuation-dissipation theory is a common approach in 

thermodynamics that is used to predict system behavior by 

breaking the system responses into small forces (Kubo, 1966). 

M. Chen et al. (2013) used fluctuation-dissipation theory to 

predict patients’ HR reactions to pre and post- spontaneous 

breathing trial treatment. The reactions were modeled with 

HRR measures . M. Chen et al. (2013) found that 

thermodynamic rules can model HR response after stress 

moments. They further suggest that the HRR extracted from 

this type of modeling can be used to personalize critical care as 

HR can be remotely monitored through noninvasive wearable 

devices. This can be very helpful for between-session therapies 

in PTSD sufferers, particularly for predicting reactions after an 

arousal event. Despite its promising application, and the lack of 

restrictive assumptions, fluctuation-dissipation theory is 

computationally intense and time-consuming during equation 

computation. 

2- Continuous output 

Time-variant modeling: Time-variant modeling 

models HR based on its time-dependent feature. This type of 

modeling can generate heart rate recovery measures in real 

time. Some studies suggest that measuring heart rate recovery 

in real time can especially help assess arousals and arousability 

in different individuals in response to mental stressors (Roger 

& Jamieson, 1988). Again, this type of computation will be 

beneficial for PTSD given that it may be adapted to compare 

the effect of internal stimuli (stressors generated through 

memory) to external stimuli (stressors generated from the 

environment) on PTSD patients’ arousability. 

Although time-variant modeling can be accurate and has 

been replicated in the literature (e.g., Kazmi et al., 2016; 

Lefever et al., 2014), it is computationally intense. The process 

of solving the equations within the model includes defining 

multiplex matrices for each variable, which is time and space 

consuming. Moreover, time variant modeling requires large 

datasets of high frequency (e.g., 100 Hz ) HR data which is 

often not feasible on wearable devices. 

Nonlinear dynamic modeling: Nonlinear dynamic 

modeling of HR consists of depicting HR as a set of nonlinear, 

time dependent mathematical equations (Haber & Unbehauen, 

1990). Nonlinear dynamic modeling of HR can be a promising 

method to assess arousal patterns by measuring SNS outflow 

(Valenza, Lanata, & Scilingo, 2012). Hence, this approach may 

be useful for analyzing PTSD hyperarousal patterns. Despite 

the advantages of this model, it requires high frequency HR data 

(e.g., 100 Hz) or even instantaneous HR (e.g., Valenza et al., 

2012). Instantaneous HR is a HR measure derived from HRV, 

which is often different from directly measured HR on 

smartwatches. Instantaneous HR can be extracted from 

multiplying RR intervals by the number 60 (Valenza et al., 

2012). 
Table 1: Reviewed articles categorize based on each model 

Method Articles 

 
Analysis of 

Variance 

(ANOVA) 
 

Strath et al. (2000), Xu et al. (2015), Romero-Ugalde et al. 

(2017), Khoueiry et al. (2012), Tonhajzerova et al. (2012), 

Hoyer et al. (2012), Shalev et al 

First-Order 

Exponential 
Bartels‐Ferreira et al. (2015) 

Classical 
time series 

analysis 

Chen et al. (2016), Kazmi et al. (2016), Zakeri et al. (2012), 

Peng et al. (1995) 

 
Mixed 

regression 

 

Gee et al. (2017), Bonomi et al. (2015), Xu et al. (2015), 
Romero-Ugalde et al. (2017), Diderichsen et al. (2013), 

Zakeri et al. (2012), Khoueiry et al. (2012), Hoyer et al. 

(2012) 

 

Machine 

learning 

 

Kolus et al. (2016), Kolus et al. (2014), McDonald et al. 

(2019), Zhang et al. (2012), 

Fluctuation-
dissipation 

theory 

Chen et al. (2013), Peng et al. (2009), Lu et al. (2009) 

Time-
Variant 

modeling 

 

Kazmi et al. (2016), Valenza et al. (2014), Lefever et al. 
(2014), Ferrer et al. (2013), Ferrer et al. (2013), Olufsen et 

al. (2013), Valenza et al. (2012a), Valenza et al. (2012b), 

Zazula et al. (2012), Echeverría et al. (2012) 

Nonlinear 

dynamic 
modeling 

 

Chen et al. (2016), Kazmi et al. (2016), Ferrer et al. (2013), 
Park et al. (2013), Olufsen et al. (2013), Valenza et al. 

(2012a), Valenza et al. (2012b), Zazula et al. (2012), Scalzi 
et al. (2012), Echeverría et al. (2012), Hoyer et al. (2012), 

Cheng et al. (2008), Mazolleni et al. (2016), Zakynthinaki 

(2015) 

 

 

 



   

 

Methodolical considerations for heart rate assessments 

The models identified in this review represent several 

promising directions for future exploration, but they also 

illustrate a hidden complexity in the use of HR data as model 

input. HR is impacted by age, sex, health, resting HR and 

respiration (Shaffer & Ginsberg, 2017). Maximum HR typically 

decreases with age. Females have higher HR levels than men 

(Magder, 2012). Athletes have lower HRs levels than sedentary 

people (Lester, Sheffield, Trammell, & Reeves, 1968). Resting 

HR is lower in more active people, and lower resting heart rates 

result in lower HR levels (Sacknoff, Gleim, Stachenfeld, & 

Coplan, 1994). Since the respiratory system affects heart 

activity, studies suggest that incorporating respiration as a 

factor in HR models improves HR estimation significantly 

(Gee, Barbieri, Paydarfar, & Indic, 2016). 

Beyond these general characteristics, it is important to 

consider the type of physical activity in the analysis. Physical 

activity significantly affects HR and HR elevations (Freedson 

& Miller, 2000). Further, high-intensity activities such as 

running and cycling affect HR differently from low intense 

activities such as sitting and laying down (Boulay, Simoneau, 

Lortie, & Bouchard, 1997). Concerns regarding activity were 

common in the reviewed studies, particularly in energy 

expenditure domain (Green, Halsey, Wilson, & Frappell, 2009). 

Green et al. (2009) suggest that body acceleration is a reliable 

indicator of physical activity and should be included in all 

analyses as a covariate or constraint. While activity is directly 

related to energy expenditure outcomes, it is also relevant for 

studies investigating stress. While some of the reviewed studies 

on stress included body acceleration in their analysis (e.g., 

Vrijkotte, Van Doornen, & De Geus, 2000), many neglected 

this factor (e.g., Shalev, Sahar, et al., 1998; Taelman, Vandeput, 

Spaepen, & Van Huffel, 2009).  

DISCUSSION 

The goals of this review were to identify and characterize 

quantiative heart rate models for relevant applications in PTSD. 

We identified four broad categories of models: descriptive 

discrete output,descriptive continuous output, predictive 

discrete output, and predictive continuous output. All of the 

identified modelling categories have relevance for PTSD, 

although modeling selection is highly dependent on the specific 

goals of the modeller. While the identified models have been 

applied across various domains (e.g., energy expenditure, 

general stress prediction), few approaches were directly applied 

to data from PTSD sufferers. Exceptions to this included: 

Shalev et al. (1998), McDonald et al. (2019). Of these studies, 

the analysis of McDonald et al. 2019 was the only predictive 

approach. Further the other studies were primarily limited to 

linear descriptive statistics such as the t-test or ANOVA 

(Cacioppo et al., 2007). These methods are valid for making 

inferences about PTSD and comparing its effects on HR among 

different groups. However, there is a need for additional studies 

in this area that explore a broader set of predictive models, and 

other factors (e.g., activity level) that have not been analyzed 

with descriptive models. 

Beyond the specific application of these models to PTSD, 

there are several more general challenges. The reviewed 

research often proceeded independently with few links between 

the various studies. This diversity makes comparison across 

studies difficult. Studies have used different datasets with 

different variables based on individual goals. Further, the 

reviewed work often focused on testing one specific model 

rather than a broad comparison. Often critical details, such as 

the model and parameter selection process, were excluded from 

the articles. For example, in the study by Kolus, Imbeau, Dubé, 

& Dubeau (2016), the authors used backward variable selection 

method and did not discuss the rationale for this choice. 

Another critical detail often not addressed in the reviewed 

studies. Mismatches between the model requirements and the 

sampling rates may result in conditions such as overfitting (H.-

S. Chen, Simpson, & Ying, 2000).  

Collectively these limits suggest a need for substantial 

additional work in modeling the relationship between HR and 

PTSD. Future studies should consider comparisons between 

several models, analzye or explicitly discuss decisions made 

throughout the modeling process, and comprehensively 

document their HR data collection. As future studies are 

conducted that enact these criteria, the utility of the modeling 

approaches identified here will become clearer and the path to 

more effective PTSD treatments will become more attainable. 
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