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Continuous monitoring and detection of post-traumatic stress disorder (PTSD)
triggers among veterans: A supervised machine learning approach

Anthony D. McDonald , Farzan Sasangohar , Ashish Jatav , and Arjun H. Rao

Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA

ABSTRACT
Post-traumatic stress disorder (PTSD) is a prevalent mental health condition among United States
combat veterans, associated with high incidence of suicide and substance abuse. While PTSD
treatments exist, such methods are limited to in-person therapy sessions and medications. Tools
and technologies to monitor patients continuously, especially between sessions, are largely absent.
This article documents efforts to develop predictive algorithms that utilize real-time heart rate
data, collected using commercial off-the-shelf wearable sensors, to detect the onset of PTSD trig-
gers. The heart rate data, pre-processed with a Kalman filter imputation approach to resolve miss-
ing data, were used to train five algorithms: decision tree, support vector machine, random forest,
neural network, and convolutional neural network. Prediction performance was assessed with the
Area Under the receiver operating characteristic Curve (AUC). The convolutional neural network,
support vector machine, and random forests had the highest AUC and significantly outperformed
a random classifier. Further analysis of the heart rate data and predictions suggest that the algo-
rithms associate an increase in heart rate with PTSD trigger onset. While work is needed to
enhance algorithm performance and robustness, these results suggest that wearable monitoring
technology for PTSD symptom mitigation is an achievable goal in the near future.
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1. Introduction

Post-traumatic stress disorder (PTSD) is a prevalent mental
disorder that commonly occurs after an individual has experi-
enced a traumatic event, such as the death of loved ones, sex-
ual violence, or serious injury (U.S. Department of Veterans
Affairs, 2017). Symptoms of PTSD involve: (1) re-experience
(e.g., flashbacks and nightmares); (2) avoidance of situations
reminiscent of the event; (3) negative changes to belief and
cognition; and (4) heightened anxiety and alertness (also
known as hyperarousal) (American Psychiatric Association,
2013). While several high-risk professions, such as firefighters,
police, and emergency department clinicians, are exposed to
frequent traumatic events, combat veterans stand out as espe-
cially prone to extreme forms of such events. In fact, 11–20%
of the veterans who served in Operations Iraqi Freedom (OIF)
and Enduring Freedom (OEF), 12% of the veterans who
served in the Gulf War (Desert Storm), and 15% of the veter-
ans who served in the Vietnam War suffered from PTSD
according to various studies (U.S. Department of Veterans
Affairs, 2016). PTSD has been associated with high rates of
suicide among combat veterans (Baker, 1984; Hendin and
Haas, 1991; Lawrence et al., 1985).

Individuals suffering from PTSD are treated using pharma-
cotherapy (medication), psychotherapy (“talk” therapy), or
both. Psychotherapy, which has been shown to be more effect-
ive in treating PTSD patients (Forbes et al., 2010), primarily

applies prolonged exposure (PE) therapy or cognitive process-
ing therapy (CPT). While PE attempts to help patients over-
come their fears by exposing them repeatedly to situations that
trigger PTSD symptoms (Foa et al., 2008), CPT helps change
patients’ understanding and perception of traumatic events by
removing the burden of blame/fault (U.S. Department of
Veterans Affairs, 2018). Despite having treatment options,
most approaches are limited to in-person sessions with a ther-
apist and have no capabilities to monitor patients between ses-
sions. Furthermore, therapy session attendance may be affected
by geographic, social, financial, and temporal barriers that
inhibit timely treatment of PTSD patients.

Recent technological advances have resulted in the devel-
opment of mobile health (mHealth) applications (referred to
as “apps”). The emergence of mHealth apps has enabled
patients to monitor their symptoms, carry out therapeutic
work asynchronously, communicate (and socialize) with
other patients, and contact clinicians or emergency person-
nel in the event of crises (Rodriguez-Paras et al., 2017; Sloan
et al., 2011; Al Ayubi et al., 2014). A recent review by
Rodriguez-Paras et al. (2017) showed that, while technolo-
gies exist for PTSD management, few applications have been
directly integrated with clinical PTSD treatments, thereby
making it challenging to potentially monitor PTSD patients
and provide timely care and support. While there have been
recent advances in sensor technology that enable real-time
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tracking for various conditions such as stroke and diabetes
(Rand et al., 2009; Zanon et al., 2012), to the best of the
authors’ knowledge, there exists no data-driven, continuous
monitoring tool to predict the onset of PTSD triggers. To
address this gap, work is in progress to design a veteran-
centered mHealth app to detect the onset of PTSD triggers,
and engage veterans in therapeutic activities and support
systems (see Williams et al., 2018; Khanade and Sasangohar,
2017). A central component of this app is the PTSD trigger
detection algorithm. Following a review of related literature,
this article documents our computational approach for
detecting PTSD triggers by using supervised machine learn-
ing techniques—similar to detection of elevated stress

levels—on “ground truth” physiological data collected natur-
alistically from veterans during several cycling events.

1.1. Prior algorithms for stress detection

The challenge of using physiological data to differentiate
between levels of human stress has received significant
attention in previous work. The goals of this literature vary
between exploring stress in different domains (Healey and
Picard, 2005; Zheng et al., 2016), identifying new measure-
ment methods (Zhai and Barreto, 2006), or validating new
measures (Costin et al., 2012). In the context of machine
learning, these approaches can be differentiated by their

Table 1. Summary of stress detection algorithms.

Reference Domain Features Classifier Ground truth

(Picard et al., 2001) General Statistical and domain-based
features for HR, SC, facial
muscle tension, and
breathing rate

MAP classifier
k-Nearest Neighbor

Multiclass
Classes of emotions

(Healey & Picard, 2005) Driving Statistical, spectral, and domain-
based features for HR, SC, and
breathing rate

Linear Discriminant Analysis Multiclass
Rest, highway driving, and
city driving

(Zhai & Barreto, 2006) General HRV statistical features
Power-spectrum based heart
rate features
Galvanic skin response
Statistical and non-linear
features
Pupil diameter
Body temperature

Naive Bayes
Decision Tree
Support Vector Machine

Binary
Mental stress from
normal stress

(Boonnithi et al., 2011) General HRV statistical features
HR statistical features
Power spectrum-based features
Sympathetic modulation index
Vagal modulation index
Sympathovagal balance index

Not reported Binary
Mental stress from
normal stress

(Costin et al., 2012) Driving Mean HR
Mean HRV
Morphological Validity
from HRV

Not reported Multiclass
Normal, low, and high mental
stress based on driving
environment

(Holmgard et al., 2013) PTSD treatment Statistical features of Skin
conductance

Correlative analysis Correlations with PTSD profiles
and Stress Self-reports

(Bousefsaf et al., 2013) General Heart rate variability measured by
remote camera

Correlative analysis Correlations with skin
conductance measures

(Singh et al., 2013) Driving Statistical and syntactic features of
galvanic skin response and PPG
Spectral features of HRV
Statistical features of HRV

Neural Networks Multiclass
Relaxed, Moderate Stress, and
Stressed, based on driving
environment

(Melillo et al., 2013) Student exams Non-linear HRV features based on
Poincare plots and
approximate entropy

Linear Discriminant Analysis Binary
Pre-exam stress and post-
holiday stress

(Sano & Picard, 2013) Naturalistic
observations
of general stress

Survey responses
Skin conductance statistical and
non-linear features
Accelerometer statistical and
non-linear features

Support Vector Machine
k-Nearest Neighbor

Binary
Subjective ratings of low and
high stress

(McDuff et al., 2014) General HR, HRV, and breathing rate-
based features

Support Vector Machine
Naive Bayes

Binary
Mental stress induced through
arithmetic and a rest state

(Zheng et al., 2016) Competitive cycling HR statistical and frequency
features
Frequency and wavelet-based
EEG features

Support Vector Machine
k-Nearest Neighbor

Multiclass
Low, medium, and high anxiety
based on a composite rating

(Ciabattoni et al., 2017) General Statistical features of HRV
Statistical features of galvanic
skin response
Mean and maximum body
temperature

k-Nearest Neighbor Binary
Mental stress from
normal stress
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domain, input features, classification algorithms, and ground
truth measures. Table 1 shows a summary of prior algo-
rithms arranged by these facets.

1.1.1. Domain
Explorations of stress detection have primarily been con-
ducted in laboratory settings, and focused on general stresses
associated with fixed tasks (Boonnithi and Phongsuphap,
2011; Ciabattoni et al., 2017; McDuff et al., 2014; Picard
et al., 2001; Zhai and Barreto, 2006). In addition to these
general studies, several studies have focused on specific
domains, such as driving (Costin et al., 2012; Healey and
Picard, 2005; Singh et al., 2013), student exams (Melillo
et al., 2013), and competitive cycling (Zheng et al., 2016).
Work on PTSD has been limited; however, Holmgard et al.
(2013) explored stress detection among PTSD patients while
participants interacted with a desktop game. PTSD monitor-
ing through physiological reactions remains a research gap,
and studies in naturalistic settings are largely absent.

1.1.2. Input measures and feature generation
Stress detection literature has explored many physiological
data sources and feature types. Physiological sources
explored include heart rate (HR; Boonnithi et al., 2011;
Costin et al., 2012), heart rate variability (HRV; Bousefsaf
et al., 2013; Zhai and Barreto, 2006), skin conductance (SC;
Ciabattoni et al., 2017; Healey and Picard, 2005, 2013),
breathing rate (Healey and Picard, 2005; Picard et al., 2001),
facial muscle tension (Picard et al., 2001), body temperature
(Ciabattoni et al., 2017; Zhai and Barreto, 2006), body
movement (Sano and Picard, 2013), and brain measures
through electroencephalography (EEG; Zheng et al., 2016).
These measures have been collected through clinical meth-
ods (Picard et al., 2001), remote camera sensing (Bousefsaf
et al., 2013; McDuff et al., 2014), and wearable technologies
(Sano and Picard, 2013; Zheng et al., 2016). Analyses have
identified HR and HRV as promising indicators of stress
(Boonnithi et al., 2011; Khanade and Sasangohar, 2017).

Given that these measures often result in noisy signals,
most work has applied pre-processing methods to ensure
accuracy. Feature generation is a technique commonly
applied to the raw data to produce a set of features for algo-
rithm input. Features explored previously include statistical
features (e.g., mean and standard deviation), spectral fea-
tures (e.g., Fourier transforms), and domain specific meas-
ures (e.g., sympathetic modulation index). In addition to
these feature generation methods, several studies have
employed principle components analysis (PCA) to identify
combinations of effective features (Sano and Picard, 2013;
Zheng et al., 2016). While there is some evidence supporting
the effectiveness of statistical features as identifiers of stress
(Boonnithi et al., 2011), other studies have shown that non-
linear and spectral features are the most effective (Melillo
et al., 2013). Most studies employ a combination of statis-
tical, nonlinear, and spectral features. In these cases, features
selection methods are used to reduce the feature set and
identify the most effective features (e.g., Picard et al., 2001).

1.1.3. Classification approaches
Many classification approaches have been used to classify
mental stress from normal states; 0bhowever, these
approaches have not been applied to PTSD patients in nat-
uralistic settings. Work in other domains has used Support
Vector Machines (SVM; McDuff et al., 2014; Sano and
Picard, 2013; Zhai and Barreto, 2006; Zheng et al., 2016), k-
Nearest Neighbor (k-NN; Ciabattoni et al., 2017; Picard
et al., 2001; Sano and Picard, 2013; Zheng et al., 2016),
Naive Bayes (McDuff et al., 2014; Zhai and Barreto, 2006),
Linear Discriminant Analysis (LDA; Healey and Picard,
2005; Melillo et al., 2013), neural networks (Singh et al.,
2013), and decision trees (Zhai and Barreto, 2006). Of the
current approaches, SVM is the most widely used.
Comparative analyses have shown that SVM outperforms
decision trees (Zhai and Barreto, 2006) and Naive Bayes
classifiers (McDuff et al., 2014; Zhai and Barreto, 2006), and
performs comparably to k-NN (Sano and Picard, 2013);
however, given the diversity in feature generation methods,
domains, and ground truths used, it is difficult to generalize
these findings. Two notable exclusions from the list of cur-
rent approaches are Convolutional Neural Networks (CNN)
and random forests. These approaches have been widely
employed in other human state detection problems, such as
driver impairment (McDonald et al., 2014, 2017), speech
recognition (Faust et al., 2018), heart attack identification
(Acharya et al., 2017a, 2017b), and seizure detection
(Acharya et al., 2017c). Random forests are an ensemble
extension of decision trees that incorporate bagging—itera-
tive random selection of feature subsets (Breiman, 2001).
Trained random forest models consist of a large set of deci-
sion trees, each trained on random subsets of features.
Classification in a random forest model is performed by a
majority vote amongst the predictions of each tree.
Theoretically, this process reduces the tendency of tree-
based models to overfit the training data. CNNs are a deep-
learning extension of standard multi-layer neural networks
that use multiple layers as filters, or convolutional layers, to
focus on specific feature groups. CNNs are particularly
robust for high-dimensional feature sets and time-series clas-
sification (LeCun and Bengio, 1995). This robustness is
driven by the ability of CNNs to generate their own feature
spaces, which has a further advantage of eliminating the
need for feature engineering. One concern with the use of
random forests and CNNs is to justify the added model
complexity (i.e., degrees of freedom) with additional predict-
ive performance. Previous studies addressed this issue by fit-
ting multiple models and statistically comparing their
predictive performance (e.g., Singh et al., 2013).

1.1.4. Ground truth
There are two dimensions associated with ground truth in
prior work: binary versus multiclass ground truth, and the
definition of stress. In binary classification studies, states are
defined as either stressed or resting. Multiclass studies
expand this to include medium- and high-stress states. Most
work has focused on binary classification (Boonnithi et al.,
2011; Melillo et al., 2013; Sano and Picard, 2013; Zhai and
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Barreto, 2006), although several approaches investigated
multiclass classification (Costin et al., 2012; Picard et al.,
2001; Zheng et al., 2016). Generally speaking, multiclass
classification problems are more difficult to solve and evalu-
ate, though they may be advantageous in practice, as differ-
ent stress states may benefit from different interventions. In
this study, we investigate binary classification, as our focus
is differentiating between acute PTSD stress triggers and
normal behavior.

The definition of stress typically depends on the domain
of interest. Laboratory studies have induced stress with tasks
such as the Stroop test (Bousefsaf et al., 2013; Zhai and
Barreto, 2006). Studies in the driving domain often relate
stress to driving environments such as city or highway driv-
ing (Healey and Picard, 2005). In their investigation of
PTSD, Holmgard et al. (2013) induced stress with a super-
market shopping simulation that included potential audio
and visual PTSD triggers. Naturalistic studies have typically
identified stress through subjective survey responses. This
analysis uses ground truth defined by real-time participant
reporting operationalized through interactions (tapping)
with a smartwatch. This approach is advantageous as it is
contextual, is relatively non-invasive, and has high temporal
accuracy. In addition, finger tapping has been shown to
reduce anxiety (Bauman and Melnyk, 1994), which may
improve participation.

1.1.5. Summary
Few existing stress detection algorithms focus on the PTSD
domain and consider deep-learning or ensemble learning
methods. In this article, we address these gaps by developing
PTSD trigger detection algorithms using deep learning and
ensemble techniques. The remainder of this article describes
our methods used to collect the ground truth, discusses the
dataset and data processing steps, presents the results of fit-
ted algorithms, and concludes with a discussion of findings
and recommendations for future work.

2. Methods

2.1. Experimental data

Data for this research were collected during bicycle riding
events organized by Project Hero—a non-profit organization
that is dedicated to helping veterans and first responders
with PTSD. Physiological data were collected using a wear-
able health monitoring tool developed at the Applied
Cognitive Ergonomics Lab (ACE-Lab) at Texas A&M
University. The tool is an mHealth app designed for
Android Wear devices, which will be programmed with the
detection algorithm described in this article to learn and
respond to the wearer’s PTSD-specific physiological cues.
The device helps detect changes in heart rate not associated
with athletics or normal activities and interacts with the
wearer to help manage the onset of a PTSD trigger or con-
tact the wearer’s support system if assistance is needed. We
collected physiological data from 107 veterans who volun-
teered to participate during five Project Hero bicycle riding

events across the U.S. between August 2017 and April 2018.
This analysis included data from 100 participants due to
data corruption in the remaining seven participants’ record-
ings. Participants ranged from 24 to 74 years of age (M ¼
47.3, SD ¼ 11.0). Events took between three and seven days,
during which participants were asked to wear a smartwatch
(Moto 360 Sport or Polar M600) equipped with the tool for
the duration of the event. The tool was designed to operate
and receive user feedback continuously. Participants received
training at the beginning of events and were asked to report
the occurrence of PTSD triggers by tapping anywhere on
the watch face. The tool recorded this ground truth as time-
stamped events for further analysis.

In addition to the self-reported PTSD trigger events, our
dataset also contains continuous time-series accelerometer
and heart rate data. Accelerometer data were sampled at a
frequency of 60Hz; heart rate data were collected at 10Hz.
Despite the requirements for continuous usage of the device,
data were not recorded at all times due to issues with the
device batteries. The length of the recordings for each of the
participants varied, with an average length of 14.58 hours
(SD ¼ 15.01 hours). As this work represents an initial
exploration of the use of smartwatch-based physiological
measures to predict PTSD triggers, we focused on only the
heart rate data for this analysis. Analysis of the demographic
factors and accelerometer data is left for future work.

2.2. Data preprocessing

All data preprocessing was completed in R version 3.5.1
(2017). The data preprocessing consisted of four steps: win-
dowing, window labeling, Kalman filter imputation, and div-
ision of the data into training and testing datasets. These
steps are discussed in the remainder of this section.

2.2.1. Windowing
In order to provide sufficient patterns of data for stress
moment classification, the heart rate data were divided into
one-minute sliding windows with 50% overlap. This method
is a standard approach for time-series data (Dietterich,
2002). This window size was selected based on prior analy-
ses of heart rate data (McDuff et al., 2014) and the max-
imum resolution of data imputation (discussed in the
following section). The overlap was selected based on prior
analyses (Salahuddin et al., 2007), and was intended to
reduce the correlation between features in successive win-
dows. Each window was assigned a label based on the pres-
ence or absence of a self-reported PTSD trigger event within
the window. Windows containing a PTSD trigger event were
assigned a PTSD trigger label, and windows without an
event were assigned a normal label. After windowing, the
dataset consisted of 11,312 windows with 172 PTSD
event windows.

2.2.2. Kalman filter imputation
One of the challenges with off-the-shelf wearable technology
is the presence of missing data. We addressed this issue
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with Kalman filter imputation, which is based on quadratic
dynamic systems (Chatfield, 2016). The imputation was
completed with the “ImputeTS” package in R (Moritz and
Bartz-Beielstein, 2017). While there are several methods for
data imputation, Kalman filters were selected as they have
been validated for HR imputation in previous work (Gui
et al., 2014). We further evaluated this decision with an ana-
lysis of imputation results and known data.

The known data imputation analysis was conducted with
complete one-minute windows. Ranges of consecutive HR
values were randomly dropped in these windows and the
dropped values were projected using Kalman filtering.
Following the imputation, the average mean squared error
between the imputed data and original data was calculated.
We investigated ranges of consecutive missing values from 1
to 30. The results of this analysis are shown in Fig. 1. Based
on this analysis, we selected 5 as the maximum consecutive
imputation range, as it was the largest set of consecutive val-
ues to have a maximum MSE under 15, a cutoff used in Gui
et al. (2014). Following this step, all windows with more

than five consecutive missing values were dropped from the
dataset. The final number of complete windows in the data-
set was 10,081 with 172 PTSD event windows.

2.2.3. Training and test sets
In order to assess algorithm effectiveness, the dataset was
randomly divided into training and testing sets by partici-
pant. Separating at the participant level avoids bias in the
algorithm toward unique artifacts in participants’ heart rate
profiles and gives the best possible estimate of how the
results would generalize to a broader veteran population. A
split of 70% training and 30% testing was used to ensure
that enough PTSD stress events remained in the testing set
for adequate statistical power. A final downsampling step
was performed on the training data to rebalance the amount
of positive and negative training instances to a ratio of 5-to-
1. This step was used to reduce bias and improve efficiency
in the algorithm training process. The choice of a 5-to-1
ratio was assessed with a sensitivity analysis that compared
model performance for models trained on a 5-to-1, 2-to-1,
and 1-to-1 ratio of PTSD stress events and non-PTSD stress
events. This analysis indicated that a 5-to-1 ratio led to the
best predictive performance across algorithms. The numbers
of data instances in training and testing are shown in
Table 2.

0
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1 5 10 15 20 25 30

Amount of missing values
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Figure 1. Mean Squared Error (MSE) for Kalman filter projections of known data with ranges of consecutive missing values. The horizontal dashed line represents
the maximum MSE cutoff (15).

Table 2. PTSD trigger events and non-PTSD trigger events in the training and
testing datasets.

Label Train Test

Non-PTSD Triggers 610 133
PTSD Triggers 122 50
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2.3. Feature generation and selection

Previous research has indicated that statistical features
(Boonnithi et al., 2011), spectral features (Zheng et al., 2016),
and nonlinear features (Melillo et al., 2011) are all valid
approaches for feature generation in this context. We used a
comprehensive time-series feature generation and selection
process in this study that leveraged the TSFRESH package in
Python (Christ et al., 2016). The TSFRESH package generates
a feature set including distributional parameters (e.g., mean,
quartile range), Fourier and wavelet components, and other
features, such as sample entropy, the time of the last max-
imum value, and the frequency of the minimum and max-
imum values. The feature set that TSFRESH calculates
includes all of the feature types discussed in Table 1. The fea-
ture generation process was applied to the windowed Kalman
filtered heart rate data for both the training and testing data-
sets. Following feature generation, a subset of the most rele-
vant features was identified using the Benjamini Hochberg
procedure (Benjamini and Yekutieli, 2001)—a hypothesis test-
ing-based method that identifies the most relevant features in
a large feature set. The Benjamini Hochberg process uses a
null hypothesis that a feature has no predictive power and
conducts a statistical test to attempt to reject the null hypoth-
esis. Features with a p-value of less than 0.05 are retained in
the final feature set. The testing data were withheld from the
Benjamini Hochberg procedure to avoid bias in the final pre-
diction results. After applying Benjamini Hochberg proced-
ure-based feature reduction, the feature set included nine
features—six representing Fourier components and one each
representing aggregated linear trend, change quantiles, and
energy ratio. Table 3 provides a description of these features.
This feature data set was used in all algorithm fitting processes
except for the neural network models, which used raw data
following the example in Acharya et al. (2017b). The feature
selection process was evaluated by training models with both
the full feature set and the reduced feature set. In all cases, the
reduced feature set improved algorithm performance.

2.4. Algorithm optimization and fitting

The literature on stress detection algorithms suggests that
SVM, decision trees, and neural networks are promising
approaches. One goal of the present analysis is to assess the

performance of CNN and random forests, especially as they
compare to less complex algorithms (i.e., neural networks and
decision trees). Another goal is to assess how the techniques
employed here compare to known benchmarks. SVMs provide
a benchmark as they have been used extensively in similar com-
parative analyses (e.g., McDuff et al., 2014; Zhai and Barreto,
2006). Therefore, we included five algorithms in this analysis:
SVM with a radial kernel, decision trees, neural networks,
CNN, and random forests. The SVM, decision tree, and ran-
dom forest models were fit with the feature data using the caret
package in R (Kuhn et al., 2017). The algorithm fits were opti-
mized via an internal cross-validation using the training data
that used AUC as the objective criteria. The CNN and neural
network algorithms were fit to the raw data using the Python
package Keras (Chollet, 2015). The architecture and parameters
for the CNN were optimized to maximize AUC on a validation
set using the Python package Hyperas (Pumperla, 2018). The
algorithms and their optimized parameters and algorithms are
summarized in Table 4. All algorithms were designed to pro-
vide a continuous prediction of PTSD stress moment likelihood
as output. While the structural interpretation of most of the
algorithms is clear from the information in Table 4, the CNN is
less apparent. Figure 2 depicts the architecture of the CNN
along with the dimensions of each layer. The layers are identi-
fied by their layer type: convolutional, max pooling, flattening,
dense (or fully connected), and output. The convolutional
layers filter the input data and transform it to a new feature
space. The max pooling layers reduce the dimensionality of
these new feature spaces to expedite learning. The flattening
layer converts the pooled features into a two-dimensional array
so that they can be processed with the dense layers. The dense
layers and output layer form a standard multilayer neural net-
work, which converts the new feature space into predictions.

3. Results and discussion

The algorithms were evaluated by their Area Under the
receiver operating characteristic Curve (AUC). The receiver
operating characteristic (ROC) curve is a plot of true posi-
tive rate by false positive rate over a range of algorithm con-
fidence thresholds. The AUC is a robust measure of binary
classification performance, as it is insensitive to class dispar-
ities (Fawcett, 2004). Statistical differences in the ROC

Table 3 Summary of the features included in the non-neural network based algorithms.

Feature number Feature name Feature description

1 FFT coefficient 0 The real component of the absolute value of the first coefficient of a discrete Fourier
decomposition of the signal

2 FFT coefficient 19 The real component of the absolute value of the nineteenth coefficient of a discrete
Fourier decomposition of the signal

3 FFT coefficient 26 The real component of the absolute value of the twenty-sixth coefficient of a discrete
Fourier decomposition of the signal

4 FFT coefficient 28 The real component of the absolute value of the twenty-eighth coefficient of a
discrete Fourier decomposition of the signal

5 FFT aggregated variance The variance of the absolute Fourier transform spectrum.
6 FFT aggregated skew Skew of the absolute Fourier transform spectrum.
7 Energy ratio The sum of squares of chunk 2 out of 10 chunks of the time-series expressed as a

ratio with the sum of squares over the whole series
8 Change quantiles The average of consecutive changes of the heart rate time-series inside of a corridor

between quantiles 0.4 and 0.6 of the distribution of heart rates in the window.
9 Aggregated linear trend The linear least-squares regression for values of the time series that were aggregated

over chunks versus the sequence from 0 up to 50.
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curves were assessed using a one-sided DeLong’s test
(DeLong et al., 1988), conducted with the “pROC” package
in R (Robin et al., 2011). A threshold of p¼ 0.05 was used
for all tests.

3.1. Algorithm predictive performance

Figure 3 shows the ROC curves and AUC values for the five
fitted algorithms. All algorithms predicted significantly

better than random. The SVM with the radial basis kernel
had the highest AUC, 0.67, although the random forest was
within 0.01 AUC, and the CNN was within 0.04 AUC.
Pairwise comparisons indicated no significant differences
between the algorithms.

Collectively, these results provide support for the use and
further development of SVM, ensemble techniques (such as
random forests), and deep learning models (such as CNN)
for PTSD symptom detection. These results align with previ-
ous explorations of SVM and deep learning and stress detec-
tion (McDuff et al., 2014; Singh et al., 2013); however, these
findings are unique in focusing on PTSD and in comparing
other common machine learning algorithms.

3.2. Prediction analysis

One limitation of the deep learning and ensemble
approaches is that they provide limited insight into the pat-
terns of heart rate associated with PTSD trigger onset. In
order to assess such differences qualitatively, we analyzed
the predictions on the raw heart rate data from the CNN,
SVM, and random forest models. These results are shown in
Fig. 4, which plots raw, mean-centered, heart rate traces for
correctly predicted windows with a summary trendline (in
blue). The traces for the PTSD symptom data are centered
on the onset of symptoms (30 s into the window). Figure 4
shows that, despite significant noise in the data, the algo-
rithms appear to associate an increase in heart rate with

Table 4 Fitted algorithms and optimized parameters.

Machine learning approach Algorithm input Parameters optimized Parameter values

SVM Heart-rate features Cost (C)
Sigma
Kernel

1
10

Radial Basis Function
Decision tree (DT) Heart-rate features Maximum tree depth 19
Neural network Kalman-filtered heart rate data Number of hidden layers

Neurons in each hidden layer
Weight decay
Batch size
Epochs
Activation function

2
HL1¼ 32, HL2¼ 18

0.01
64
2000

Sigmoid
Random forest Heart-rate features Size of feature set 6
CNN Kalman-filtered heart rate data Architecture

Weight decay
Batch size
Epochs
Activation function

See Figure 2
0.01
6

2000
Sigmoid

Figure 2. CNN architecture diagram indicating the order and dimensions of the convolutional, max pooling, and fully connected layers.
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Figure 3. ROC curves and corresponding AUC values for the five algorithms
evaluated in this study.
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Figure 4. Heart rate profiles for correctly predicted PTSD symptoms and non-PTSD symptom moments. Predictions are based on the CNN algorithm.
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Figure 5. Exemplar windows (window 7 and window 13) of non-PTSD trigger events and PTSD trigger events. In the PTSD windows, the event occurs at a time
into the window of 30 s.
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PTSD trigger onset. These trends are further highlighted in
Fig. 5, which shows exemplar windows of data containing
PTSD trigger events and non-PTSD trigger events. This
finding aligns with reviews of PTSD symptom onset, which
suggest heart rate accelerations following the onset of PTSD
symptoms (Khanade and Sasangohar, 2017).

3.3. Limitations and future work

The approach documented in this article represents our initial
computational work for detecting PTSD triggers from physio-
logical data in a naturalistic setting. While the results show
promise in real-time detection of PTSD triggers, the approach is
limited by the dataset as well as the scope of approaches explored
here. Most importantly, while participants were briefed to report
PTSD trigger events, the sensitivity to, and interpretation and
tolerance of, such events may vary among patients, resulting in
nonhomogeneous data. Such variability is expected at the cur-
rent preliminary stage of research; however, future work should
aim at personalized deep learning solutions that take individual
characteristics into consideration. In addition to reporting limi-
tations, the continuous operation of the tool proves taxing on
Android devices’ battery life. In fact, some participants reported
battery life as low as four hours. Given the busy schedule of
activities during the riding events, recharging the tool might
have been impractical and challenging. In addition, a significant
amount of data was missed due to perspiration (e.g., during the
rides), damage to the devices (e.g., due to rain), misuse (e.g., not
wearing the device properly), forgetting to wear the device (e.g.,
after charging the watch or showering) or not wearing the device
at all. Another potential threat to internal validity of the ground
truth data collection method used is overreporting. While the
participants were asked to only report the occurrence of PTSD
triggers, some participants might have also reported general
high anxiety/stress feelings. In addition, while all participants
claimed being diagnosed with PTSD, the research team had no
viable method for verification of such claims.

From an analysis perspective, this work may be limited
by the imputation methods, downsampling, and reliance on
heart rate data. Future work should explore methods such as
Gaussian Process Regression—as assessed in Gui et al.
(2014)—for data imputation. These methods may yield a
larger dataset, which, in turn, could reduce the likelihood of
overfitting. Similarly, alternative sampling techniques, such
as Synthetic Minority Over-sampling (Chawla et al., 2000)
or weighted samples, could be used to create larger training
sets and further reduce the likelihood of overfitting. Future
work should analyze additional measures such as acceler-
ation and heart rate variability, following the example of
Sano and Picard (2013). Acceleration data may be used as a
corollary to physical activity and disambiguate heart rate
fluctuations caused by activity rather than PTSD symptoms.

Despite these important limitations, to the best of our
knowledge, the technology that uses the algorithm docu-
mented in this article is the first attempt at non-invasive
continuous monitoring of PTSD triggers. While other tools
and methods exist to monitor general stress (as discussed in
the introduction), such tools are not specific to PTSD, do

not use deep learning or ensemble techniques, and generally
suffer from intrusiveness, are non-discreet, and in most
cases lack evidence suggesting that a user-centered design,
development, and analysis method is employed. Work is in
progress to collect data to build on the promising results
documented in this article to improve the sensitivity and
specificity of the detection algorithm, as well as to investi-
gate the acceptance of such technology among veterans.

4. Conclusions

PTSD is a prevalent condition among combat veterans and has
resulted in significant societal challenges in the United States.
While tools and technologies exist to help veterans manage their
symptoms, continuous monitoring tools to detect the occurrence
of PTSD triggers and to intervene in a timely manner are missing,
despite potential value. Our overall research aims to address this
important gap by utilizing non-intrusive sensing, user-centered
and persuasive design, and machine learning methods to develop
an “always-on” intervention to support veterans suffering from
PTSD. To this end, a novel tool has been designed to collect
ground truth from veterans via naturalistic testing. This article
documented the development and analysis of series of algorithms
that used heart rate collected from this tool to predict the onset of
PTSD symptoms. The results suggest that SVM, random forests,
and CNN algorithms predict PTSD symptom onset significantly
better than random classifiers. Analysis of the predictions suggests
that the algorithms associated increases in heart rate with PTSD
trigger onset. While several limitations remain and need to be
addressed in future work, the promising results presented in this
article align with previous analyses of stress detection from
physiological data, suggesting that the approach may be general-
ized to broader contexts involving stress detection andmitigation.
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