Evaluation of Microcontroller Wireless Technology to Enable a Smart Connected Intensive Care Units (ICU) Rodriguez-Paras, P.E.¹, Sasangohar, F.^{1,2,3}

sasangohar@tamu.edu; patricio.rodriguez@tamu.edu;

¹ Department of Industrial and Systems Engineering, Texas A&M University ² Center for Remote Health Technologies and Systems, Texas A&M University ³ Department of Environmental and Occupational Health, Texas A&M University

1. Background

Intensive Care Unit (ICU) is a complex environment.

- The users usually experience high cognitive workload and stress.
- Interoperability between equipment and the complexity of tasks lead to performance degeneration.

Patients can suffer from the latent errors of poor ICU system design.

- Mitigation of interoperability issues can lead to a better quality of the working environment, and patient treatment.
- Microcontroller and Single Board Computers (SBC)s are readily available to design costeffective tools that can target specific needs.

Raspberry Pi SBC

What are microcontrollers and Single Board **Computers (SBC)?**

- Microcontrollers and SBCs are small but powerful computers that that are capable of controlling multiple outputs.
- Can aid with interoperability between tools

Recent emergence of

wearable devices (e.g., *communication tools,* smartphones, smartwatches) and wireless electronic equipment make microcontrollers and SBCs a good candidate to *improve interconnectivity* and interoperability among different subsystems in an ICU

<u>Critical Need</u>: to investigate the efficacy of microcontrollers and SBCs to improve interoperability in ICUs

2. Research Aims

Aim 1: Investigate the efficacy of microcontrollers to improve interoperability among devices in the ICU **Aim 2**: Compare microcontroller capabilities to improve a wireless Task Severity Awareness Tool (TAT)

3. Case Study: Development of a Task Severity Awareness Tool (TAT) **3.2 TAT Improvement** 3.1 TAT Background

- Developed to enable nurses to inform others when a high-severity task such as medication administration is being conducted
- Tool was implemented in a cardiovascular intensive care unit (CVICU) of a Canadian teaching hospital.
- This tool consists of three actuators (two buttons and one pedal) located at the bedside, and a scrolling LED display outside the CVICU room connected to a microcontroller (Arduino Uno).
- When any of the actuators are pressed, the microcontroller detects the input, and as an output the scrolling LED display lights up with a "do not disturb" message.

3.3 Methodology for Choosing a Microcontroller or SBC and Tool design

Digital] and

- may mitigate these limitations.

• Several ICU-specific criteria were identified using a review of literature and subject matter expert interview • The two dominant microcontrollers (Arduino and Rasberry Pi) were compared against these criteria using a decision matrix • Compared to Arduino Uno, Raspberry Pi 3 was deemed superior in terms of memory space, processing power, input/output, and connectivity. While Arduino Uno is a more economical option, the capabilities are much more limited.

Criteria	Arduino Uno	Raspberry Pi 3	Criteria	Arduino Uno	Raspberry Pi 3
nalog Input	6	Not included, but can be	Analog Input	3	1
Input/output Pins PWM Outputs	14, 6 pins can be PWM	added 40 GPIO Pins	Digital Input/Output	2	3
Memory	32 KB Flash Memory	SD Card	pins Memory	2	4
Processor	ATmega328P	Quad Core ARMv8	Processor	3	5
CPU Speed USB Ports	16 MHz 0	1.2 GHz 4	CPU Speed	3	5
Price	\$24.95	\$39.95	USB Ports	0	5
Connectivity	Needs attachments	Bluetooth and Wi-Fi	Price	5	4
	for Bluetooth, Wi-Fi, IR, and RF	connectivity included. Attachments for IR or RF	Connectivity	2	4
		needed.	Total	20	31

Table 1: Parallel Comparison for Processing Technology

• While the tool showed promise in mitigating unnecessary interruptions during high-severity tasks, usage required an extra step (pushing a button).

• Automated actuation of the display and wireless connection between wearable tools

Table 2: Decision Matrix for Processing Technology

4. Future Work

Development of tools to connect a specific set of tools (e.g., pumps, displays, phones)

- There is a wide range of sensors and devices that can be used with microcontrollers or SBCs.
- Customization of tool to target a particular problem (e.g., interruption mitigation).

Reduce interoperability problems

Centralize information from multiple devices into one

Reduce the complexity of medical tasks to improve performance

- Human-centered designed tools to aid diminish the complexity of tasks healthcare practitioners conduct
- Benefits range from the reduction of medical errors and improvement of the quality of working environment.

5. Sources

Sasangohar, F., Donmez, B., Easty, A. C., & Trbovich, P. L. (2015). Mitigating nonurgent interruptions during high-severity intensive care unit tasks using a task-severity awareness tool: A quasi-controlled observational study. Journal of *Critical Care*, *30*(5), 1150.e1-1150.e6.

Sasangohar, F., Donmez, B., Easty, A., Storey, H., & Trbovich, P. (2014). Interruptions experienced by cardiovascular intensive care unit nurses: An observational study. Journal of Critical Care, 29(5), 848-853.

https://doi.org/10.1016/j.jcrc.2014.05.007