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Abstract

Background: Diabetes affects millions of people worldwide and is steadily increasing. A serious condition associated with
diabetes is low glucose levels (hypoglycemia). Monitoring blood glucose is usually performed by invasive methods or intrusive
devices, and these devices are currently not available to all patients with diabetes. Hand tremor is a significant symptom of
hypoglycemia, as nerves and muscles are powered by blood sugar. However, to our knowledge, no validated tools or algorithms
exist to monitor and detect hypoglycemic events via hand tremors.

Objective: In this paper, we propose a noninvasive method to detect hypoglycemic events based on hand tremors using
accelerometer data.

Methods: We analyzed triaxial accelerometer data from a smart watch recorded from 33 patients with type 1 diabetes for 1
month. Time and frequency domain features were extracted from acceleration signals to explore different machine learning models
to classify and differentiate between hypoglycemic and nonhypoglycemic states.

Results: The mean duration of the hypoglycemic state was 27.31 (SD 5.15) minutes per day for each patient. On average,
patients had 1.06 (SD 0.77) hypoglycemic events per day. The ensemble learning model based on random forest, support vector
machines, and k-nearest neighbors had the best performance, with a precision of 81.5% and a recall of 78.6%. The results were
validated using continuous glucose monitor readings as ground truth.

Conclusions: Our results indicate that the proposed approach can be a potential tool to detect hypoglycemia and can serve as
a proactive, nonintrusive alert mechanism for hypoglycemic events.

(JMIR Diabetes 2023;8:e40990) doi: 10.2196/40990
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Introduction

Diabetes is a chronic condition that is estimated to affect over
9.3% of the global population as of 2019 [1], resulting in the

death of 12% of the US population [2] and an estimated US
$327 billion in economic costs each year [3]. About 10% of the
population with diabetes have type 1 diabetes mellitus (T1DM),
and the remaining 90% have type 2 diabetes mellitus [4].
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Regular blood sugar monitoring and special attention to food
intake are critical to managing diabetes [5,6].

Low blood glucose (BG), also known as hypoglycemia, is a
serious condition that affects patients with diabetes when their
BG level falls below 70 mg/dL [7]. This is more common for
patients with T1DM [8]. Values below 54 mg/dL may cause
severe hypoglycemia, leading to cognitive impairment, seizure,
and even loss of consciousness [9].

The most prevalent method of monitoring BG has been via BG
meters, which require manually pricking the finger to get a
reading. However, the main limitation of these meters is that
the measurement is periodic and manual. Continuous glucose
monitors (CGMs) were commercialized at the beginning of the
21st century [10] and have gained popularity, especially among
patients with T1DM [11], as they are capable of monitoring BG
levels continuously and autonomously. CGMs can provide
information about BG trends and warn against the onset of both
hyper- and hypoglycemia. However, despite their benefits, many
generations of CGMs have several drawbacks. Although CGMs
automatically read BG at short intervals, multiple daily finger
sticks are necessary to calibrate the CGM for accuracy [12].
CGMs are usually intrusive, and many patients face barriers to
the adoption and continuous use of CGM systems, such as pain,
complexity, the need for frequent sensor changes, and frequent
calibrations [13]. Newer generations of CGMs (such as Dexcom
G6) are less irritating and do not require finger stick BG
calibrations, as they are factory calibrated. However, they are
still expensive, with or without insurance, because they require
a transmitter as well as sensors. Moreover, these sensors could
fall off the body or may fail early before the end of the sensor
session, and they are difficult to restart after they fail [14-16].

“Tremor” or “trembling” has been reported to be a common
sign of hypoglycemic events among patients with diabetes
[17,18]. In one study surveying 132 older adults with diabetes,
71% (n=92) reported trembling [19]. Other studies have also
shown tremors to be a significant symptom of hypoglycemia
whether reported subjectively [20-23] or measured objectively
in the lab [24]. No methods are currently available to capture
and assess hypoglycemic hand tremors at home. Home
monitoring can be a viable tool to provide insight into the
tremors and thus help detect hypoglycemia.

Monitoring tremors may provide a cost-effective and
nonintrusive method to detect the onset of hypoglycemic events.
Accelerometer sensors are validated devices to measure motion
and have been used in various applications such as assessing
physical activity [25-31], aiding in the management of Parkinson
disease [32-34], and gait analysis [35,36]. However, outside of
conceptual framework development efforts [37], the only study
that attempted to detect hypoglycemia using accelerometer data
was our recent work on adolescents with T1DM [38].

Machine learning has shown promise for prognosis in medicine
[39]. Supervised machine learning models find patterns across
input features to predict the target. With the recent advent of
inexpensive wearable physiological sensors, hypoglycemia
prediction can be improved. Previous researchers used
physiological signals, including photoplethysmography,
electrocardiogram (ECG), heart rate (HR), HR variability,

galvanic skin response, and skin temperature, to predict
hypoglycemic events [6,40-45]. However, the application of
machine learning to monitor hypoglycemic events through hand
tremors remains a research gap despite the initial promise of
extracting physiologic tremor features in adults with T1DM
[17,46]. Key barriers to addressing this gap are (1) access to
longitudinal tremor data sets in diabetic populations and (2)
clinical thresholding of hypoglycemic events based on BG
levels.

With these challenges in mind, the objective of this research is
to develop machine learning algorithms to detect hypoglycemia
through hand tremors using acceleration data from a 1-month
home study on adults with T1DM. We expect this research to
enable real-time monitoring of hypoglycemia through
noninvasive and nonintrusive wearable technologies with a
built-in accelerometer sensor. The remainder of this paper
describes our methods used to collect data, discusses the data
processing steps, presents the results of developed algorithms,
and concludes with a discussion of our findings and
recommendations for future work.

Methods

Data Collection
A home study was designed to collect continuous accelerometer
data from participants with T1DM. Accelerometer data were
collected using Apple Watch Series 5 (Apple Inc) with a
sampling frequency of 64 Hz. We used a mobile app called
TremorApp to record, archive, and transfer the accelerometer
data. TremorApp is an app our team customized in the lab to
run continuously in the background of the watch. It allows
participants to make a single tap on the Apple watch whenever
they feel they have low blood sugar, and it is logged
automatically. In addition, the app is connected to participants’
iPhones, where they can track the number of hypoglycemic
events they have reported, as well as their HR and acceleration.
The participants then transferred their data from the phone to
our cloud folder upon completion of the study.

Participants who had an Apple Watch Series 5 were allowed to
use their own watch. We monitored the data for 1 week, and if
there were any issues with running the app or data collection,
then we mailed them our own Apple Watch Series 5 for the
purpose of this study under the agreement that they would return
it upon completion.

The inclusion criterion was patients with T1DM who regularly
used CGMs. To be consistent, only patients who were using a
Dexcom CGM (G5 and G6; Dexcom Inc) were enrolled in the
study. Dexcom uses a sensor wire inserted underneath a person’s
skin to measure glucose readings in interstitial fluid throughout
the day and night, with a sampling frequency of 5 minutes [47].

Procedures
The participants were instructed to wear the smart watch
continuously for 1 month and report the instances of tremors.
Every week, participants would upload their accelerometer data
file, subjective low blood sugar logs, HR data file, and CGM
logs over their phones to a secure server after being trained on
how to do so over the internet with the help of a researcher from
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the team (author KZ). In this study, we only used acceleration
data and CGM logs for the classification problem. Self-reported
hypoglycemia and heart data were not used in this study.

Participants
Adults (>18 years old) diagnosed with T1DM who use a CGM
device were invited to participate in this study through the
university’s campus bulk mail. A total of 45 participants started
the study, among whom 7 dropped out due to nonconformance
or technical issues with the phone, Apple Watch, or CGM. In
addition, 5 patients’ devices did not correctly record
accelerometer data. The data collected from 33 patients,
including 21 (64%) females and 12 (36.4%) males, aged between
18 and 56 (mean 25.35) years were included in this study. Out
of the 33 participants, 3 (9 %) identified as having 2 or more
races, and the remaining (n=30, 91%) all identified as White.
Additionally, 6 (18%) participants identified as being of
Hispanic/Latino heritage. On average, patients wore CGM
devices 95.44% (SD 3.27%) of the time per day. Each patient
was expected to wear their watch the whole day. However, it
was worn 39.93% (SD 29.57%) each day. Therefore, on average,
31.26% (SD 16.52%) of overlapped accelerometer and CGM
data equal to 450.14 (SD 237.89) minutes were available per
day for each patient. These overlapped data were used in this
study. Note that data recorded during sleep were also included
and treated the same way as nonsleep data. Additionally, there
was no particular period in the day where data were unavailable
for all patients. In other words, in every hour of a 24-hour day,
there was at least 1 patient with available data.

Ethics Approval
The study was approved by the institutional review board of
Texas A&M University (IRB2019-0261F) and complied with
the American Psychological Association Code of Ethics. All
participants provided informed consent.

Data Preprocessing
All data preprocessing was completed using Python version
3.6.9 software (Python Software Foundation). Acceleration
components were filtered using a second-order Butterworth
low-pass filter (cutoff frequency was set to 30 Hz). The
magnitude of the 3D acceleration was calculated as the square
root of acceleration components in the x, y, and z directions.
To provide sufficient patterns of data for hand tremor detection,
accelerometer data were divided into 3-second sliding windows
with 50% overlap [48]. Acceleration windows between 150
seconds before and 150 seconds after the CGM sampling were
labeled as hypoglycemic or nonhypoglycemic based on their
corresponding BG levels. Windows with BG levels less than
70 mg/dL were labeled hypoglycemic, and windows with BG
levels between 90 and 140 mg/dL were labeled
nonhypoglycemic [49,50]. We also explored sequential
classification based on 9 consecutive windows. To facilitate
this analysis, only data with 9 consecutive windows were
included in the final analysis. After cleaning, labeling,

windowing, and consecutive windows consideration, the data
set had 89,634.45 minutes of data consisting of 3,585,378
windows with 113,975 hypoglycemic events. One of the
challenges of training the algorithms to detect hypoglycemia
was the imbalanced data set, with an average of 3.3%
hypoglycemic windows per patient. To address this issue, we
performed random oversampling (also called “upsampling of
the minority class”) by duplicating examples from the
hypoglycemic class in the training set [51]. Upsampling was
used because it reduces information loss in the quantification
process by using the entire data set. In addition, upsampling has
proven to be more robust to noise, and it performs better for
predictions compared to downsampling [27,52]. Different
resampling ratios (1-1, 2-1, 3-1, 3-2, 4-1, 4-2, and 4-3) were
evaluated, and the ratio 3 (nonhypoglycemic events) to 1
(hypoglycemic events) was selected based on performance
results. Note that oversampling was performed only on the
training data, and data were not upsampled in the validation set.

Feature Extraction
Once signals were preprocessed, a total of 86 features (42 for
the time domain and 44 for the frequency domain) were
extracted from the windowed acceleration data (x, y, z, and the
magnitude) [17,46]. Table 1 provides descriptions and
abbreviations of the features employed. Different statistical
features were extracted from the time domain, including mean,
SD, variance, maximum, minimum, range, number of peaks
(NOP), skewness, and kurtosis. The time domain features
showed discriminative power for tremor detection [53]. To
calculate NOP, we used the mean value of each window as a
required threshold of peaks. Additionally, the Pearson
correlation coefficients (CORRs) [54] between all combinations
of acceleration components (x, y, z) and their magnitudes were
computed and used as features. CORR components have been
shown to be relevant for tremor detection [55]. In total, 42
features were extracted in the time domain.

The fast Fourier transform was used for the frequency domain
analysis. Hypoglycemia is characterized by hand tremors with
a frequency range between 4 and 14 Hz [46]. The power spectral
density (PSD) of the acceleration windows was calculated using
the Welch periodogram [56]. The Welch method computes an
estimate of the PSD by dividing the time signal into successive
blocks, computing a modified periodogram for each segment,
and then averaging the periodograms [56]. Several frequency
domain features were extracted from the PSD of all acceleration
components x, y, z, and magnitude, including mean, maximum,
SD, NOP, average band power (ABP), normalized ABP
(NABP), and frequency of maximum PSD (Fmax). The mean
of each PSD window was used as a required threshold to
calculate NOP. We also calculated mean, maximum, SD, and
ABP for the PSD of frequencies between 4 and 14 Hz. We call
these features hand tremor frequency range (HTFR) features.
In total, 44 features were extracted from the frequency domain
of the acceleration data.
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Table 1. Summary of features included in the machine learning models.

AbbreviationCategory and features

Time domain

MMean

SDStandard deviation

VVariance

MaxMaximum

MinMinimum

RRange

NOPNumber of peaks

SKSkewness

KSKurtosis

CORRCorrelation coefficient

Frequency domain

MMean

MaxMaximum

SDStandard deviation

NOPNumber of peaks

ABPAverage band power

NABPNormalized average band power

FmaxFrequency of maximum power spectral density

Frequency domain in 4-14 Hz range (HTFRa)

MMean

MaxMaximum

SDStandard deviation

ABPAverage band power

aHTFR: hand tremor frequency range.

Classification Models
Many classification approaches have been used to classify
tremors versus normal states, mainly for Parkinson disease or
essential tremor disorder [57-64]. However, these approaches
have not been applied to tremors caused by hypoglycemia.
Tremor studies have used random forest [57-60], support vector
machines (SVMs) [60,61,65,66], k-nearest neighbors (KNNs)
[58,62,63], and naïve Bayes [58,64]. Among the current
approaches, random forest, SVM, and KNN are the most widely
used. Comparative analyses in the tremor literature have shown
that random forest and KNN models outperform naïve Bayes
[58] and perform comparably to SVM [60]. However, because
of the diversity in feature extraction methods, ground truths
used, and different domains, it is difficult to generalize these
findings.

Based on the promise of models used in the tremor literature,
we used 3 machine learning models—random forest, SVM, and
KNN—to classify hand tremors (hypoglycemic state) from
nonhypoglycemic states in patients with hypoglycemia.
Randomized searches were performed to tune the models.

Random forest is a flexible supervised machine learning
algorithm comprising uncorrelated decision trees, which are
combined to create more accurate predictions and reduce
variance [67]. For random forest, the following hyperparameters
were tuned: the number of decision trees in the forest, maximum
depth, and the criteria with which to split on each node (Gini
or Entropy). Based on the model performance, 100 decision
trees with a maximum depth of 5 and the Gini function were
used. KNN is a nonparametric algorithm that assumes that
similar data points can be found near each other. It seeks to
compute the distance (usually through Euclidean distance)
between data points and then allocates a category based on the
most frequent neighboring data points [68]. A wide range of K
neighbors, from 3 to 159, was tested, and finally, K=27 was
chosen as it resulted in the best model performance. In addition,
Euclidean distance was used to measure the distance between
the data points. SVM is typically used for classification
problems. In the SVM algorithm, a hyperplane, also called a
decision boundary, will be built where the distance between 2
classes of data points is at its maximum. This hyperplane
separates the classes of data points on either side of the plane
[69]. Different kernel types such as linear, poly, radial basis
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function (RBF), and sigmoid were tested to map the data set
into higher dimensional spaces. The regularization parameter
C was also changed from 0.1 to 10, and no significant changes
were observed. Finally, an RBF kernel with C=1 was used, as
a better performance was observed. Moreover, for all 3
algorithms (ie, random forest, KNN, and SVM), a classification
threshold of 0.5 was used.

The 3 machine learning models were trained on the acceleration
features. We also used ensemble learning for the hypoglycemia
classification. Ensemble methods are techniques that create
multiple models and then merge them to improve classification
performance [70]. Ensemble methods usually result in more
accurate solutions than a single algorithm. We combined random
forest, KNN, and SVM for the ensemble learning model.
Different approaches exist for the ensemble learning technique,
such as majority voting, bagging, boosting, and stacking [71].
We used the majority voting method for the classification task.
In this approach, each model makes a prediction (vote) per test
instance, and the final output prediction will be the one with
more than half of the votes [72].

Sequential Classification
We performed sequential classification, which is a predictive
modeling approach where a consecutive sequence of inputs over
time is considered, and the task is to predict the hypoglycemia
category for the aggregated sequence as a whole [73]. The inputs
were the 3-second windows of acceleration data with 50%
overlap. We classified a sequence as hypoglycemia if at least
50% of the 3-second inputs were predicted as such. Otherwise,
the sequence was classified as nonhypoglycemia. We tested
different sequence times, including 15 seconds, 30 seconds, and
60 seconds containing 9, 19, and 39 windows, respectively. The
best performance was obtained for 15-second sequences, and
the results reported are based on those sequences.

All analyses were implemented in Python software (Python
Software Foundation). As shown in Figure 1, recordings from
33 patients with hypoglycemia were imported to Python and
preprocessed. Time and frequency domain features were
extracted from the 3 axes of the acceleration signal and their
magnitude. The feature vector was fed to the machine learning
models for classification and subsequently for ensemble and
sequential models.

Figure 1. Overview of the analysis approach. ACC: acceleration. ML: machine learning.

Evaluation
To evaluate the classification models, we used 2 cross-validation
(CV) strategies, 10-fold CV and leave-one-subject-out (LOSO)
CV [74,75]. The 10-fold CV performed the fitting procedure a
total of 10 times, with each fit being performed on a training
set consisting of 90% of the data selected at random. The
remaining 10% of the data were used as a hold-out set for
validation. Note that data from the same participant were not
present simultaneously in the training/validation sets. LOSO
CV is a special case of CV where the number of folds equals
the number of participants in the data set. In this scheme, the
learning algorithms are evaluated once for each participant,
using all other participants as a training set and the selected
participant as a test set. LOSO CV is a robust estimate of model
performance, as each participant is given an opportunity to
represent the entirety of the test data set [76]. Precision, recall,
F1-score, and accuracy were computed on the validation sets.
Precision quantifies the number of positive class predictions
that belong to the positive class. Recall quantifies the number
of positive class predictions made of all the positive samples in
the data set. The F1-score measures a combination of precision
and recall (ie, the harmonic mean of them. Accuracy is the sum

of true negatives and true positives over all samples. The
following equations define the evaluation criteria used in this
study:

Where t, f, p, and n respectively denote true, false, positive, and
negative. The hypoglycemia class is considered positive, and
the nonhypoglycemia class is negative.

Results

The mean duration of the hypoglycemic state was 27.31 (SD
25.15) minutes per day for each patient. On average, patients
had 1.06 (SD 0.77) hypoglycemic events per day. We used
acceleration features in time and frequency domains to classify
hypoglycemic versus nonhypoglycemic states through hand
tremors. The mean PSD for the frequencies between 4 and 14

Hz 4 for the hypoglycemic windows was .

However, for the nonhypoglycemic windows, it was .
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Figures 2 and 3 show exemplar acceleration magnitude and the
corresponding PSD in 3-second windows for hypoglycemic and
nonhypoglycemic instances during resting and active positions,
respectively. Resting position is when there is no activity;

therefore, the acceleration magnitude is close to 1 g. Active
position is when the user is moving his/her hand; therefore, the
acceleration magnitude is larger than 1 g.

Figure 2. Exemplar acceleration magnitude and the corresponding power spectral density (PSD) for hypoglycemic and nonhypoglycemic states during
resting position. ACC: acceleration; HG: hypoglycemic; non-HG: nonhypoglycemic.

Figure 3. Exemplar acceleration magnitude and the corresponding power spectral density (PSD) for hypoglycemic and nonhypoglycemic states during
active position. ACC: acceleration; HG: hypoglycemic; non-HG: nonhypoglycemic.
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It was observed that in the resting position, the amplitude of the
acceleration in the time domain and the amplitude of the
frequencies in the tremor range (4-14 Hz) were higher for the
hypoglycemic state compared to the nonhypoglycemic state.
Additionally, in both resting and active positions, higher
variations were observed in the PSD of frequencies between 4
and 14 Hz for the hypoglycemic states than nonhypoglycemic
states. The average SD of PSD in frequencies between 4 and

14 Hz for the hypoglycemic windows was .

However, for the nonhypoglycemic windows, it was .

Most of the higher amplitude frequencies in hypoglycemic states
were in the 4 to 14 Hz range, with some patient-specific
variations.

To better understand which features are more relevant, we
computed the mean decrease in impurity (MDI) based on Gini
impurity from the random forest algorithm [77]. As shown in
Figure 4, the HTFR features and, in particular, the ABP in
frequencies between 4 and 14 Hz had the highest importance
factors in distinguishing hypoglycemic states. Feature selection

was attempted by removing the least relevant features (starting
from skewness) based on MDI values shown in Figure 4.
Finally, the best model performances were observed when the
following time-domain features were excluded from all
acceleration dimensions x, y, z, and magnitude: skewness (4
features), minimum (4 features), range (4 features), maximum
(4 features), kurtosis (4 features), and CORR (6 features). These
features were the least relevant ones based on the MDI values
in Figure 4. The results are reported for the feature-optimized
classification models based on the remaining 60 features.

Figure 5 shows the receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUROC) for the 3
algorithms using 10-fold CV. The area under the curve (AUC)
is a robust measure of binary classification performance since
it is not sensitive to class disparities [78]. All algorithms
predicted significantly better than random. The random forest
model had the highest AUC of 0.9, although the KNN was
within 0.02 AUC, and the SVM was within 0.03 AUC. Pairwise
comparisons indicated no significant differences between the
algorithms.

Figure 4. Feature importance using mean decrease in impurity (MDI) from the random forest structure, along with their intertree variability represented
by the error bars. ABP: average band power; CORR: correlation between axis; Fmax: frequency of maximum power spectral density; HTFR: hand
tremor frequency range; KS: kurtosis; M: mean; Max: maximum; Min: minimum; NABP: normalized average band power; NOP: number of peaks;
SK: skewness; R: range; V: velocity.

Figure 5. Receiver operating characteristic (ROC) curve and corresponding area under the curve (AUC) values for the 3 algorithms evaluated in this
study. KNN: k-nearest neighbor; SVM: support vector machine.
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Table 2 shows the classification performance with all the models
based on 10-fold CV and LOSO CV. The random forest model
performed better (accuracy of 81.09%, and precision of 82.67%)
when evaluated using 10-fold CV, while KNN performed better
(accuracy of 79.93% and precision of 82.03%) when evaluated
using LOSO CV. The ensemble learning model improved the

prediction performance to an accuracy of 81.46% using 10-fold
CV and 80.14% for LOSO. The key mechanism for improved
performance with ensembles is often the reduction in the
variance component of prediction errors made by the models
[79]. The ensemble learning model achieved a recall of 78.59%.

Table 2. Performance of classification models using 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV.

Accuracy (%)F1-score (%)Recall (%)Precision (%)Specificity (%)AUROCaModel

10-foldLOSO10-foldLOSO10-foldLOSO10-foldLOSO10-foldLOSO10-foldLOSOb

78.8379.9378.4079.4176.9776.9579.9282.0380.7883.150.880.88KNNc

80.2478.4678.8378.2877.7275.9479.9881.4882.9381.150.870.87SVMd

81.0978.9580.2478.8877.9677.4582.6780.3784.4880.510.900.88Random forest

81.4680.1480.0379.7678.5978.8281.5380.7484.5581.51N/AN/AeEnsemble learning

aAUROC: area under the receiver operating characteristic curve.
bLOSO: leave one subject out.
cKNN: k-nearest neighbor.
dSVM: support vector machine.
eN/A: not available.

Discussion

Principal Results
The primary purpose of this study was to use a wrist-worn
accelerometer sensor to detect hand tremors associated with
hypoglycemia in patients with T1DM. We used the acceleration
and CGM data collected from 33 patients with T1DM. Several
machine learning algorithms were employed to develop the
detection system. The ensemble learning model achieved the
highest accuracy of 81.46%, with 81.5% precision and 78.6%
recall for the hypoglycemic class.

Collectively, the results provide support for the use and further
development of ensemble techniques (such as random forest),
KNN, SVM, or a combination of these models for hypoglycemia
hand tremor detection. These results align with previous
explorations of tremor detection [50,57,59-61,64,80,81];
however, our findings are focused on hypoglycemia.

Comparison With Prior Work
The acceleration-based detection system in this study is
comparable to the recent research on hypoglycemic detection
using other noninvasive sensor-based data such as HR, HR
variability, ECG, and temperature. Maritsch et al [82] collected
physiological data from patients with T1DM over 1 week using
an Empatica E4 smart watch and derived HR and HR variability
features to detect hypoglycemic episodes. They achieved a
maximum accuracy of 82.7%, with 76.7% sensitivity for
hypoglycemic detection using the gradient-boosted decision
trees algorithm and 10-fold CV. Elvebakk et al [83] used
multiple sensors to collect sudomotor activity data at 3 skin
sites, ECG-derived HR, HR-corrected QT interval, near-infrared,
and bioimpedance spectroscopy data from 20 patients. They
found that hypoglycemia could be identified with a maximum
F1-score accuracy of 88%. Marling et al [40] used HR, galvanic

skin response, and skin and air temperatures collected over 2
months to detect hypoglycemia in patients with T1DM who
were middle-aged. They showed that an SVM model with a
linear kernel could differentiate hypoglycemic from
nonhypoglycemic states. Porumb et al [84] used a personalized
medicine approach and deep learning models, convolutional
neural network, and recurrent neural network, to automatically
detect nocturnal hypoglycemia using a few heartbeats of raw
ECG signals recorded with wearable sensors. They achieved a
maximum accuracy of 85.7% and sensitivity of 84.7% for
hypoglycemia detection using their proposed convolutional +
recurrent system. The presented model in our study achieved a
maximum accuracy of 81.46%, with 78.82% recall for
hypoglycemic detection solely relying on a wrist-worn
accelerometer sensor.

Strengths, Limitations, and Future Work
The method documented in this paper represents our initial
computational work for detecting hand tremors associated with
hypoglycemia using acceleration data in a naturalistic setting.
To our knowledge, this is the first paper documenting the
application of machine learning for the detection of the onsets
of hypoglycemia using hand tremors. We used a longitudinal
data set collected within 1 month, comprising 21 females (64%)
and 12 males (36%), with an average of 24.04 and 26.26 minutes
hypoglycemic per day, respectively. The obtained results suggest
that wrist-worn accelerometers may provide the necessary
sensory information to detect the presence of hand tremors
associated with hypoglycemia. Given the increased availability,
affordability, discreetness, accuracy, and nonintrusiveness of
smart watch–based accelerometer sensors, these results show
promise as an alternative to CGM for the early detection of
hypoglycemic events, and they may have life-saving
implications.
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However, this study is not without limitations. First, the analysis
presented here is based on a limited sample. In addition to the
5 patients (13%) whose devices did not adequately record their
accelerometer data, 3 (9%) patients did not have any low blood
sugar readings recorded on their CGM. This might be due to
some CGM users setting higher thresholds for hypoglycemic
alerts (eg, 75-80 mg/dL), perceiving hypoglycemic events early,
or better managing hypoglycemic events. In addition, participant
age could also be an important limitation since most of the
participants in this study were college students with an average
age of 24.56 (SD 9.67) years.

HTFR features were extracted from the PSD between 4 and 14
Hz frequencies to distinguish hypoglycemic states from
nonhypoglycemic states. Although HTFR features helped
improve the classification performance, there were several
windows labeled hypoglycemic without showing noticeable
power density in the 4 to 14 Hz frequencies and several windows
labeled nonhypoglycemic with high power density in the 4 to
14 Hz frequencies. Different reasons can cause these to happen
during accelerometer or CGM readings, such as motion artifacts
or nonhypoglycemic tremors. This study collected data during
activities of daily living. Motion artifacts are unavoidable when
an acceleration sensor is used in dynamic conditions. Sensor
measurements are usually contaminated by motion artifacts due
to hand movement, wearable tightness level [85], physiological
tremors [86], and so on. Noise will become more critical with
the smart watch’s tightness level. When worn too loosely, the
device will frequently slide along the wrist, thus negatively
impacting sensor accuracy. The effect of the tightness in terms
of signal quality will be exacerbated during high-intensity
activities.

People who experience hypoglycemic events are likely to
experience repeated episodes of hypoglycemia. Over time,
repeated episodes of hypoglycemia can cause hypoglycemia
unawareness. The brain and body no longer produce symptoms
that warn of low blood sugar, such as tremors or irregular
heartbeat [87,88]. The approach proposed in this paper is not
capable of capturing such events. Another limitation was that
the hypoglycemia threshold is personal, and it can change based
on the physical activity level [89]. In this study, the patient
definition (personalized threshold) of hypoglycemia was not
available. Therefore, for all patients, we used an average value
of 70 mg/dL, which is commonly cited as a threshold of

hypoglycemia for many people [7,90-92] and is the clinically
prescribed threshold for hypoglycemia [93]. Future work should
set a personalized threshold of hypoglycemia for different
patients to capture this event accurately.

In this study, we do not distinguish between the different causes
of low glucose values and hand tremors. For example,
high-intensity physical activities may cause blood sugar to drop
below this threshold in some instances [94]. Future work should
explore activity-aware methods to remove such instances from
the hypoglycemia class to improve the performance of learning
algorithms. In addition, hand tremors may be induced by either
toxins (such as excess of certain heavy metals in the body) or
medications (such as antidepressants) [95], or they may be
related to essential tremors [96]. Therefore, future studies should
account for these potential confounding factors in recruitment
and analysis efforts. Future work may also analyze additional
measures, such as HR variability [97,98], to differentiate
hypoglycemic events from nonhypoglycemic events and
improve the performance of learning algorithms.

Finally, the objective of this research was not to evaluate an
intervention. As a result, participants were not instructed to
undertake any particular action to manage hypoglycemia (such
as eating or drinking certain foods) beyond their normal habits.
However, the findings documented in this paper can inform the
design of nonintrusive accelerometer-based hypoglycemia
detection and monitoring tools and systems.

Conclusion
Hypoglycemia is a prevalent disease that affects millions of
people worldwide. While tools and technologies exist to help
patients with hypoglycemia monitor their BG, they are either
invasive, requiring finger pricking, or intrusive and expensive.
The proposed work utilized a combination of nonintrusive and
noninvasive sensing and machine learning methods to develop
detection algorithms for hypoglycemic events via hand tremors.
This paper documents the potential of linear accelerator data to
provide significant utility for classification models that detect
hypoglycemic hand tremors and distinguish between
hypoglycemic and nonhypoglycemic states. Our results, while
preliminary, suggest that wearable monitoring technology for
the continuous detection and remote monitoring of
hypoglycemic events through hand tremors is an achievable
goal in the near future.
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