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Abstract
The aim of this study was to develop machine learning classification models using electroencephalogram (EEG) and eye-gaze 
features to predict the level of surgical expertise in robot-assisted surgery (RAS). EEG and eye-gaze data were recorded from 
11 participants who performed cystectomy, hysterectomy, and nephrectomy using the da Vinci robot. Skill level was evalu-
ated by an expert RAS surgeon using the modified Global Evaluative Assessment of Robotic Skills (GEARS) tool, and data 
from three subtasks were extracted to classify skill levels using three classification models—multinomial logistic regression 
(MLR), random forest (RF), and gradient boosting (GB). The GB algorithm was used with a combination of EEG and eye-
gaze data to classify skill levels, and differences between the models were tested using two-sample t tests. The GB model 
using EEG features showed the best performance for blunt dissection (83% accuracy), retraction (85% accuracy), and burn 
dissection (81% accuracy). The combination of EEG and eye-gaze features using the GB algorithm improved the accuracy 
of skill level classification to 88% for blunt dissection, 93% for retraction, and 86% for burn dissection. The implementa-
tion of objective skill classification models in clinical settings may enhance the RAS surgical training process by providing 
objective feedback about performance to surgeons and their teachers.

Keywords Blunt dissection · Retraction · Burn dissection · Hysterectomy · Cystectomy · Nephrectomy · Robot-assisted 
surgery · Expertise level

Introduction

Robot-assisted surgery (RAS) has revolutionized surgi-
cal procedures by providing benefits, such as increased 
precision, reduced surgical trauma, and improved patient 

outcomes [1]. As surgeons increasingly turn to RAS for 
procedures, such as cystectomy, hysterectomy, and nephrec-
tomy, new skills must be acquired to operate the robot and 
perform surgical procedures. Safe and effective performance 
of surgical subtasks, such as dissection and retraction, 
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requires a high level of skill and expertise in RAS. Objec-
tive measurement and evaluation of these skills are neces-
sary to train and evaluate RAS surgeons, ensuring safety 
and effectiveness.

Objective and consistent assessment of surgical skills is 
important, but current surgical practice protocols lack such 
methods. Prior research has proposed objective techniques 
to evaluate skills using physiological data, including brain 
activity, eye movement, kinematics, and surgical videos 
[2–4]. These methods have shown promising results for 
objectively assessing RAS skills; however, they also have 
limitations, such as only testing basic tasks in a dry lab with 
a small number of participants, introducing biases, or creat-
ing models that are computationally expensive and cannot 
be integrated into surgical robot systems.

One potential approach for objectively evaluating sur-
gical skills in RAS is the use of electroencephalogram 
(EEG), eye-gaze features, and machine learning algo-
rithms. EEG is a noninvasive technique that measures the 
electrical activity of the brain and has been used in vari-
ous studies to investigate the cognitive processes involved 
in performing surgical tasks [5]. Machine learning algo-
rithms have been proposed as useful tools for classifying 
various levels of surgical skills based on features extracted 
from physiological data during RAS tasks [6, 7] (Table 1). 
It has been shown that eye-gaze features are significantly 
different for inexperienced, competent, and experienced 
participants performing RAS subtasks in the operating 
room [8].

Several EEG features have been proposed and compared 
across surgical skill levels that have demonstrated signifi-
cant differences between experts and novices, or among 
novice, intermediate, and expert categories [2, 5]. How-
ever, in most of these studies, the ability of neuromonitor-
ing findings to classify subjects accurately by skill level 

was not analyzed. Therefore, further investigation is war-
ranted in this area.

This study explored the classification of surgical skill 
levels in RAS performing subtasks using EEG, eye-gaze 
features, and three machine learning algorithms.

Methods

This study was approved by the Institutional Review 
Board (IRB: I-241913) and Institutional animal care and 
use committee approval (IACUC 1179S) of Roswell Park 
Comprehensive Cancer Center. The IRB granted permis-
sion to waive the need for written consent. Participants 
were given written information about the study and pro-
vided verbal consent.

Participants

Eleven par ticipants (10 males, 1 female), aged 
42 ± 12 years, including two residents, four fellows, and 
five surgeons, performed 11 hysterectomies, 11 cystecto-
mies, and 21 nephrectomies using the da Vinci surgical 
robot on live pigs (Fig. 1).

Data recording

EEG data recorded via the 124-channel  AntNeuro® EEG 
system (500 Hz) and eye-gaze data via  Tobii® eyeglasses 
(50 Hz).

Table 1  State-of-the-art studies proposing surgical skill classification models for RAS in the operating room

Study Data Trials Subjects Task Number of 
skill levels

Algorithm Accuracy

Chen et al., 2020 
[6]

Kinematics 68 17 Needle handling/
targeting, needle 
driving, suture 
cinching

2 AdaBoost, gradi-
ent boosting, 
and random 
forest

77.40%

Lee et al., 2020 
[7]

Endoscopic 
videos

4 12 Bilateral axillo-
breast approach 
robotic thyroid-
ectomy

3 support vector 
machine (SVM), 
and random 
forest

83%

Current study EEG and eye gaze 
data

212 blunt dis-
section, 1017 
retraction, and 
324 burn dis-
section

11 Hysterectomy, 
cystectomy, and 
nephrectomy

3 Multinomial 
logistic regres-
sion, random 
forest, and gra-
dient boosting,

88%, 93%, and 86% 
for blunt dissec-
tion, retraction, 
and burn dissec-
tion, respectively
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Subtask extraction

EEG data were extracted for 324 blunt dissection subtasks, 
1508 retraction subtasks, and 542 burn dissection subtasks, 
as well as eye gaze data for 212, 1017, and 324 subtasks, 
respectively [9].

Actual skill levels

An expert RAS surgeon with more than two decades of 
experience watched operation videos and assessed the sur-
gical expertise level of each participant in performing each 
subtask using the modified Global Evaluative Assessment of 
Robotic Skills (GEARS) assessment tool [10] at three levels: 
inexperienced, competent, and experienced.

Definition of EEG features

EEG signals were processed to remove artifacts using the 
signal processing steps detailed in our previous publication 

[11]. Each EEG channel was assigned to a specific area of 
the brain called Brodmann’s area (BA). EEG features were 
extracted from different brain areas [11–23]. The brain stores 
information in specific areas when new skills are acquired 
[24]. Practice and training results in changes in the func-
tional brain network [24]. These changes were quantified 
by extracting features, such as strength, search information, 
temporal network flexibility, integration, and recruitment 
[11].

These features provide an understanding of how the 
brain processes information during surgery. For example, 
search information indicates how efficiently information is 
passed between different parts of the brain [18, 25], whereas 
strength indicate how well different brain areas communicate 
with one another. Flexibility provides an understanding of 
how the brain changes over time in response to different 
demands [21], whereas integration describes how different 
parts of the brain work together over time [23]. Recruit-
ment refers to the activation of a specific brain area that 
forms interconnected networks when performing cognitive 
or behavioral tasks. This recruitment pattern can provide 

Fig. 1  Experimental setup. Representation of participant wearing EEG headset and eye tracking glasses performing surgical tasks using the da 
Vinci robot on pig in the operating room
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important insights into the underlying neural mechanisms of 
different cognitive functions and can help understand how 
the brain processes information and generates behavior [26]. 
These features were calculated for 21 different areas of the 
brain [27], and 105 features were extracted.

Definition of eye‑gaze features

Eye-gaze features, which include average pupil diameter, 
entropy of pupil diameters, total length of pupil trajectory, 
fixation rate, and saccade rate were extracted [28]. These 
features are often used in eye-tracking studies to gain insight 
into cognitive processes, such as attention, perception, and 
decision-making [29]. The average pupil diameter indicates 
arousal or interest, entropy measures variation in pupil size, 
length of pupil trajectory measures the distance covered, fix-
ation rate measures fixation time, and saccade rate measures 
the frequency of rapid eye movements between fixations.

Machine learning models for skill level classification 
using EEG features

The extracted EEG features for each subtask and the actual 
surgical skill levels were used as inputs for the gradient 
boosting classification (GB), Random Forest (RF), and 
Multinomial Logistic Regression (MLR) classification algo-
rithms to develop models for classifying the three skill level 
classes.

Twenty percent of the samples were randomly chosen and 
used as the test set. The remaining 80% were used to train 
and validate the model. The hyperparameters of each model 
(Supplement 1) were optimized using grid search technique 
and stratified five fold cross-validation that was repeated five 
times. The synthetic minority over-sampling technique was 
applied to the training sets to address the issue of imbal-
anced data across different classes [30]. The model training 
and testing was repeated 30 times and average performance 
metrics were reported. Details on training these models and 
improving their performance are provided in Supplement 1.

Machine learning models for skill level classification 
using EEG and eye‑gaze features

EEG and eye-gaze features and actual surgical skill levels 
were inputted into the GB classification to classify skill lev-
els for each subtask. The same process was used to develop 
GB models with a combination of EEG and eye-gaze fea-
tures. Feature importance was determined using permuta-
tion-based methods.

Evaluation of machine learning models

True positives (TP) were the samples, where the model cor-
rectly predicted the positive class, while false positives (FP) 
were the samples, where the model predicted the positive 
class, but the actual class was negative. The performance of 
the developed models in classifying the surgical skill levels 
of participants was evaluated using various statistical meas-
urements. These included:

– Precision: The ratio of TP and (TP + FP).
– Recall: The ratio of TP and (TP + FN).
– Average accuracy: Ratio of the sum of correct predictions 

to the total number of predictions.
– F-score: A measure of a model's accuracy that combines 

precision and recall into a single metric, ranging from 0 
to 1, where a higher value indicates better performance.

– Receiver Operating Characteristic (ROC) curves and area 
under the curve (AUC) are used to evaluate classifier 
performance. The ROC is a graph of the true positive 
rate against the false positive rate at different threshold 
values. The AUC is a numerical value ranging from 0 
to 1 that represents the probability of the classifier cor-
rectly identifying a randomly chosen positive or negative 
example. An AUC of 0.5 represents a random classifier, 
while an AUC of 1 represents a perfect classifier.

– Confusion matrix: This matrix was used to evaluate the 
performance of the machine learning model by compar-
ing the actual and predicted values.

Two-sample t tests were applied to pairs of accuracy 
results for 30 runs of each model to assess the statistical 
significance of any observed differences between the mod-
els. The Bonferroni p value correction was applied to adjust 
the p values resulting from conducting pairwise comparisons 
among the three models.

Results

Skill levels classification models in conducting blunt 
dissection using EEG features

Table 2 presents the results of the skill level classification 
in conducting blunt dissection subtasks. The accuracies 
of the RF and MLR models were similar (p value = 0.34). 
However, the accuracy of the GB model was significantly 
better than that of the MLR model (p value = 1 ×  10–3). The 
accuracy of the GB model was significantly better than that 
of the RF model (p value = 2 ×  10–4).
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Skill levels classification models in conducting 
retraction using EEG features

Table 3 presents the results of the skill level classification. 
The accuracy of the RF model was significantly better than 
that of the MLR model (p value = 4.8 ×  10–15), and the accu-
racy of the GB model was significantly better than that of 
the MLR model (p value = 2.8 ×  10–16). The accuracy of the 
GB model was significantly better than that of the RF model 
(p value = 3 ×  10–3).

Skill levels classification models in conducting burn 
dissection using EEG features

Table  4 displays the confusion matrix for the classi-
fication of skill levels. The accuracy of the RF model 

was significantly better than that of the MLR model 
(p value = 5 ×  10–3), and the accuracy of the GB model 
was significantly better than that of the MLR model 
(p value = 1.4 ×  10–6). The accuracy of the GB model 
was significantly better than that of the RF model (p 
value = 1.4 ×  10–5).

Classification models using EEG and eye‑gaze 
features

Table 5 shows the confusion matrix for classifying skill lev-
els in blunt dissection, retraction, and burn dissection using 
the GB model.

The most significant features in the classification model 
for blunt dissection subtask were the length of the dominant 
eye’s pupil trajectory, average recruitment, and integration 

Table 2  Confusion matrix 
for the classification of skill 
levels—inexperienced (I); 
competent (C); experienced 
(E)—of participants performing 
blunt dissection using three 
machine learning models: 
multinomial logistic regression, 
random forest, and gradient 
boosting

Values are (%) Logistic Regression Random Forest Gradient Boosting

I 85 13 2 88 12 0 92 8 0

C 22 70 8 26 64 10 25 66 9Actual skill level

E 6 17 77 9 11 80 5 10 85
I C E I C E I C E

Predicted Skill Level Predicted Skill Level Predicted Skill Level

Performance metrics of developed classification models for predicting the skill level

Blunt dissection
Logistic Regression Random Forest Gradient Boosting

Precision (%) 78 79 82
Recall (%) 77 77 81
Accuracy (%) 79 80 83
F1-score (%) 78 78 81
AUC 0.84 0.85 0.87

Table 3  Confusion matrix 
for the classification of skill 
levels—inexperienced (I); 
competent (C); experienced 
(E)—of participants performing 
retraction using three machine 
learning models: multinomial 
logistic regression, random 
forest, and gradient boosting

Values are (%) Logistic Regression Random Forest Gradient Boosting

I 79 13 8 89 8 3 93 4 3
C 19 69 12 16 74 10 17 73 10Actual skill level

E 8 11 81 8 7 85 8 7 85
I C E I C E I C E

Predicted Skill Level Predicted Skill Level Predicted Skill Level

Performance metrics of developed classification models for predicting the skill level

Retraction
Logistic Regression Random Forest Gradient Boosting

Precision (%) 75 83 84
Recall (%) 76 83 83
Accuracy (%) 77 84 85
F1-score (%) 76 83 84
AUC 0.83 0.88 0.89
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of channels in several brain areas. For retraction, the top 
features were the length of both the dominant and nondomi-
nant eyes’ pupil trajectories and the average recruitment and 
integration of channels in several brain areas, while for burn 
dissection, the top features were the length of both the domi-
nant and nondominant eyes’ pupil trajectories, entropy of the 
nondominant eye’s pupil diameter, and average integration 
of channels in different brain areas.

Discussion

Improved approaches are needed to assess surgical skills, 
enhance training, and ensure patient safety. Manual methods 
for skill assessment have proven to be simple to use, but 
they require a panel of experts who may be biased. Objec-
tive methods for skill assessment allow for individualized 

skill development, ultimately leading to improved surgical 
outcomes. Developing an effective method for evaluating 
surgical skills is essential to reduce medical errors. While 
some studies suggest that experience alone can be used to 
determine skill level, as demonstrated by surgeon operating 
volume, this approach has limitations. Surgeons may excel 
in some tasks but not in others, or they may perform certain 
activities poorly despite performing many operations. How-
ever, objective skill evaluation of RAS in clinical settings 
remains challenging, despite recent advances in RAS.

EEG features were extracted from different areas of 
the brain to understand information processing across the 
brain, how efficiently different parts of the brain commu-
nicate with each other, how the brain changes over time in 
response to different demands, how different parts of the 
brain work together over time, and the activation of spe-
cific brain areas that form interconnected networks when 

Table 4  Confusion matrix 
for the classification of skill 
levels—inexperienced (I); 
competent (C); experienced 
(E)—of participants performing 
burn dissection using three 
machine learning models: 
multinomial logistic regression, 
random forest, and gradient 
boosting

Values are (%) Logistic Regression Random Forest Gradient Boosting

I 80 11 9 87 3 10 89 3 8

C 22 54 24 21 47 32 22 47 31Actual skill level

E 10 10 80 12 6 82 10 4 86
I C E I C E I C E

Predicted Skill Level Predicted Skill Level Predicted Skill Level

Performance metrics of developed classification models for predicting the skill level

Burn Dissection
Logistic Regression Random Forest Gradient Boosting

Precision (%) 71 75 79
Recall (%) 72 71 74
Accuracy (%) 76 78 81
F1-score (%) 71 73 76
AUC 0.82 0.85 0.87

Table 5  Confusion matrix 
for the classification of skill 
levels—inexperienced (I); 
competent (C); experienced 
(E)—of participants performing 
blunt dissection (number 
of samples: 212), retraction 
(number of samples: 1017), 
and burn dissection (number of 
samples: 324) using EEG and 
eye-gaze features and gradient 
boosting

Values are (%) Blunt Dissection Retraction Burn Dissection

I 91 8 1 95 5 0 92 4 4

C 13 82 5 4 93 3 14 66 20Actual skill level

E 5 4 91 2 7 91 4 5 91

I C E I C E I C E
Predicted Skill Level Predicted Skill Level Predicted Skill Level

Performance metrics of developed classification models for predicting the skill level

Gradient Boosting classification models
Blunt Dissection Retraction Burn Dissection

Precision (%) 88 93 85
Recall (%) 88 93 83
Accuracy (%) 88 93 86
F1-score (%) 88 93 84
AUC 0.94 0.95 0.91
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performing cognitive or behavioral tasks. Eye gaze features 
were extracted, because eye gaze patterns infer partici-
pants’ focus of attention and level of engagement with the 
task. Machine learning models were developed using the 
extracted features and actual skill levels.

The results suggest that the GB model shows promise in 
accurately predicting surgical skill levels, particularly when 
combined with EEG and eye-gaze features (Table 5). The 
results indicated that the models could predict the skill levels 
of the participants with high precision, recall, accuracy, and 
F1-score rates. The AUC values ranged from 0.91 to 0.95, 
which suggests that the models performed well in discrimi-
nating between different skill levels. These findings suggest 
that a multimodal system that incorporates both EEG and 
eye-tracking data is necessary to achieve more accurate 
skill level prediction. Various studies have been conducted 
to propose RAS skill classification models in the OR using 
kinematic and video data (Table 1). The current study used 
EEG and eye gaze data and developed three machine learn-
ing models to classify the three surgical subtasks into three 
skill levels. The results of the current study showed high 
skill prediction accuracies (88%, 93%, and 86% for blunt dis-
section, retraction, and burn dissection, respectively) com-
pared to other studies, which demonstrated accuracy rates 
ranging from 77.4 to 83%. The accuracy of the developed 
classification models (Table 5) outperformed the state-of-
the-art models for RAS skill classification in clinical settings 
(Table 1) [31].

These results suggest that eye movements and brain activ-
ity in specific areas play important roles in the surgical per-
formance of all three subtasks. Specifically, the length of 
eye’s pupil trajectories is an important factor for all subtasks, 
and the entropy of the nondominant eye’s pupil diameter is a 
significant factor in burn dissection. In addition, the recruit-
ment and integration of channels in several brain areas are 
important for all three subtasks, indicating that cognitive 
factors, such as attention and decision-making, are crucial 
in surgical performance.

The present findings may contribute to the develop-
ment of more accurate and efficient models for surgical 
skill assessment, which can ultimately improve patient 
outcomes and enhance surgical training. These results are 
important, because accurately predicting the skill level of 
medical professionals in performing surgical procedures 
can improve patient outcomes and safety. By identifying 
individuals who may need additional training or support, 
hospitals and medical institutions can ensure that their 
staff is adequately prepared and skilled in performing sur-
gical procedures. The use of machine learning models can 
facilitate this process by providing a fast, accurate, and 
objective assessment of skill level.

Strengths of this study

Compared to previous studies, this research has several 
strengths. First, it focuses on predicting skill levels in indi-
vidual subtasks instead of the entire surgical procedure, 
offering more comprehensive insights. Second, actual 
skill levels assessed by an expert RAS surgeon were used 
instead of unreliable measures, such as years of experi-
ence. Third, the study employed various machine learning 
models to ensure robustness. Fourth, multimodal system 
data were incorporated for a comprehensive view of skill 
assessment. Fifth, three skill levels were considered for 
detailed analysis, and finally, real operations in the operat-
ing room were evaluated, making the results more appli-
cable to real-world scenarios.

Practical implications of results in RAS training

The machine learning models that were developed may 
determine whether a RAS trainee needs to practice a spe-
cific subtask, which makes the learning process faster and 
less expensive, because the trainee can focus on specific 
areas that need improvement instead of repeating the entire 
operation. This approach can result in more RAS train-
ees being accepted into training programs and completing 
them faster. Hospitals will also benefit from this approach, 
because RAS has shorter hospital stays and fewer compli-
cations than conventional surgical methods. The skill clas-
sification models that were developed provide a basis for 
the objective evaluation of RAS skills and performance, 
which can provide trainees with more useful, immediate, 
and perhaps more accurate feedback. This could lead to 
the standardization of RAS training programs for trainees 
rather than relying on the opinions of an expert panel. 
Moreover, experienced open surgeons wanting to develop 
RAS skills will benefit from the proposed approach. This 
group has already developed significant surgical skills but 
may lack experience in using RAS.

Limitations of this study and future research

Despite the promising results of this study, some limitations 
should be addressed in future research. The study involved 
only 11 participants and the assessment of GEARS metrics 
was conducted by only one expert RAS surgeon (J.L.M.). 
To validate the developed models, it is necessary to include 
more participants with various specialties from different 
training programs as well as assessments from more expert 
RAS surgeons.

Based on the findings of this study, the following research 
steps could be involved: 1) including assessments from more 
expert RAS surgeons from different institutes, 2) developing 
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automatic subtask extraction models, and 3) expanding the 
models developed in this study by incorporating data from 
more participants with diverse specialties and RAS experi-
ence from different institutes. Developing a fully automatic 
model that uses EEG and eye-gaze data, extracts subtasks, 
and detects the skill level and score of GEARS metrics for 
each subtask could enhance the RAS training. Such a model 
can provide trainees with feedback on their skills and perfor-
mance and surpass what one-on-one teaching by an expert 
and proficiency evaluations by a panel of experts offers.

Conclusions

The results demonstrated the potential of using EEG and 
eye-gaze features to predict RAS skill levels. Objective skill 
classification models in clinical settings can improve RAS 
surgical training processes by providing surgeons instant 
feedback on their level of expertise, while they are practic-
ing. Surgeons can immediately identify areas of improve-
ment and adjust their training accordingly. Integration of 
these models into surgical training programs could lead 
to better skill acquisition and ultimately improve patient 
outcomes.
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